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Challenges in CV
Consider object detection as an example:
 Variations in viewpoint
 Differences in illumination
 Hidden parts of images
 Background clutter
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Linear Classifier for Image Classification
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Image Classification

Dataset: CIFAR10 [Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.]
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Image Classification

5In this toy example, classification is performed directly on image pixels.



Image Classification

● Image classification with linear classifier
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Image Classification

● Image classification with linear classifier
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Image Classification

● An image example with 4 pixels and 3 classes.
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Image Classification

● Interpreting a linear classifier.
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Image Classification

● Hard cases for a linear classifier.
● Extracting better features (manually) may help but cannot (always) solve the 

problems.
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From Linear Classifiers to (Non-linear) Neural Networks
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Neural Networks

● Starting from the original linear classifier
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Neural Networks

● 2 layers
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Neural Networks

● 2 layers
● Also called as fully connected network
● Fully connected (FC) layer
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Neural Networks

● 2 layers
● Also called as fully connected network
● Fully connected layer
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Neural Networks

● 3 layers
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Neural Networks

● Activation function
● The function max(0, z) is called the activation function.

● What if without the activation function?
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Neural Networks

● Activation function
● The function max(0, z) is called the activation function.

● What if without the activation function?
○ The model will be linear.
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Neural Networks

● Activation functions
○ Non-linear functions
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Neural Networks

● Architectures (for MLP)
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Neural Networks

● Architectures (for CNNs)
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From Neural Networks to “Deep Learning”
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Deep Learning

• Deep learning is a collection of artificial neural network techniques that are 
widely used at present

• Predominantly, deep learning techniques rely on large amounts of data and 
deeper learning architectures

• Some well known paradigms for different types of data and applications:
 Convolutional Neural Networks (CNNs)
 Recurrent Neural Networks
 Auto-encoders
 Restricted Boltzmann Machines
 Transformer
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Traditional Approach vs DL
• Convolutional neural networks (CNNs) are a type of DNNs for 

processing images.
• CNNs can be interpreted as gradually transforming the images 

into a  representation in which the classes are separable by a 
linear classifier.

• CNNs will try to learn low-level features such as edges and lines 
in early  layers, then parts of objects and then high-level 
representation of an  object in subsequent layers.

http://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/
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http://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/
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https://towardsdatascience.com/convolutional-neural-networks-for-all-part-i-cdd282ee7947

Traditional Approach vs DL

https://towardsdatascience.com/convolutional-neural-networks-for-all-part-i-cdd282ee7947


From Neural Networks to “Deep Learning”

Core ideas go back many decades

26



From Neural Networks to “Deep Learning”
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From Neural Networks to “Deep Learning”
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From Neural Networks to “Deep Learning”
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Visual features extracted in different layers in CNN



From Neural Networks to “Deep Learning”

30Simonyan and Zisserman, 2014



From Neural Networks to “Deep Learning”

Transformer
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CLIP (Contrastive Language–Image Pre-training)

https://openai.com/research/clip

Vision Transformer (ViT)

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image 
recognition at scale." arXiv preprint arXiv:2010.11929 (2020).



From Neural Networks to “Deep Learning”

● DL is everywhere
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From Neural Networks to “Deep Learning”

● DL is everywhere
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From Neural Networks to “Deep Learning”

● DL is everywhere
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From Neural Networks to “Deep Learning”

● DL is everywhere

35Neural Radiance Fields (NeRF) for 3D vision 
https://www.matthewtancik.com/nerf

Deep learning for depth estimation
https://ruili3.github.io/dymultidepth/index.html

3D vision understanding
https://arxiv.org/pdf/2001.01349.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Li_RGBD_Based_Dimensiona
l_Decomposition_Residual_Network_for_3D_Semantic_Scene_CVPR_2019_paper.pdf

https://arxiv.org/pdf/2001.01349.pdf
https://arxiv.org/pdf/2001.01349.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Li_RGBD_Based_Dimensional_Decomposition_Residual_Network_for_3D_Semantic_Scene_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Li_RGBD_Based_Dimensional_Decomposition_Residual_Network_for_3D_Semantic_Scene_CVPR_2019_paper.pdf


From Neural Networks to “Deep Learning”

● DL is everywhere
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https://github.com/donggong
1/learn-optimizer-rgdn
https://donggong1.github.io/
blur2mflow.html



From Neural Networks to “Deep Learning”

● DL is everywhere
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Image Captioning. Vinyals et al, 2015 Karpathy and Fei-Fei, 2015
Vision question answering (VQA)



From Neural Networks to “Deep Learning”

38

“A raccoon astronaut with the cosmos 
reflecting on the glass of his helmet 
dreaming of the stars”

Generated by DALL·E 2

Ramesh et al, “DALL·E: Creating Images from Text”, 2021. https://openai.com/blog/dall-e/



3 major international CV conferences: CVPR, ICCV, ECCV; and others
Top machine learning conferences with CV research: NeurIPS, ICML, ICLR …
Robotic vision: RSS, ICRA, IROS.



Convolutional Neural Network (CNN), from MLP to CNN
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Convolutional Neural Networks (CNNs)
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CNNs

• CNNs are made up of neurons with learnable weights, as other to regular 
Neural Networks

• CNN architecture assumes that inputs are images
• Using specific assumptions for images
• So that we have local features
• Which allows us to

• encode certain properties in the architecture that makes the forward pass  more efficient and
• significantly reduces the number of parameters needed for the network



Convolutional Neural Networks (CNNs)

● Recap: fully connected (FC) layer
● A linear model, not CNNs.
● A component of CNNs FC layer
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Noticed the difference on size?
Why?
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…



CNN: Convolutional Layer

• The output of the Conv layer can be interpreted as holding neurons  
arranged in a 3D volume.

• The Conv layer's parameters consist of a set of learnable filters. Every filter  is 
small spatially (along width and height), but extends through the full  depth of 
the input volume.

• During the forward pass, each filter is slid (convolved) across the width  and 
height of the input volume, producing a 2-dimensional activation map  of that 
filter.

• Network will learn filters (via backpropagation) that activate (through the 
activation function) when they  see some specific type of feature at some 
spatial position in the input.
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CNN: Convolutional Layer

• Stacking these activation maps for all filters along the depth dimension  forms 
the full output volume

• Every entry in the output volume can thus also be interpreted as an  output of a 
neuron that looks at only a small region in the input and  shares parameters 
with neurons in the same activation map (since these  numbers all result from 
applying the same filter)
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With 6 filters, we get 
6 activation maps
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CNN: Convolutional Layer

Local Connectivity
• As we have realized by now, it is impractical to use fully connected  networks

when dealing with high dimensional images/data
• Hence the concept of local connectivity: each neuron only connects to a  local region of 

the input volume.
• The spatial extent of this connectivity is a concept called receptive field of the neuron.
• The extent of the connectivity along the depth axis is always equal to the  depth of the 

input volume.
• The connections are local in space (along width and height), but always

full along the entire depth of the input volume.
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N will not be 7 after padding.
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Other padding operations: replication padding, reflection padding …
69
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Other pooling operations: average/median pooling …
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CNN: Pooling Layer

• The function of pooling layer
• to progressively reduce the spatial size of the representation to reduce

the number of parameters and computation in the network, and
• hence to also control overfitting

• The Pooling Layer operates
• independently on every depth slice of the input and resizes it spatially,

typically using the MAX operation (ie: max pooling)
• The most common form is a pooling layer with filters of size 2x2  applied 

with a stride of 2, which downsamples every depth slice in the  input by 2 
along both width and height, discarding 75% of the  activations
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Summary of CNNs

● ConvNets stack CONV,POOL,FC layers
● Trend towards smaller filters and deeper architectures
● Trend towards getting rid of POOL/FC layers (just CONV) 
● Historically architectures looked like [(CONV-RELU)*N-POOL?]*M-(FC-

RELU)*K,SOFTMAX, where N is usually up to ~5, M is large, 0 <= K <= 2. 
○ but recent advances such as ResNet/GoogLeNet have challenged this paradigm 
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Training CNNs/Deep Neural Networks
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Some slides at this part are from Dr Sonit Singh sonit.singh@unsw.edu.au

mailto:sonit.singh@unsw.edu.au


CNN: Training
• A loss function is used to compute the model’s prediction accuracy from

the outputs
• Most commonly used: categorical cross-entropy loss function

• The training objective is to minimise this loss
• The loss guides the backpropagation process to train the CNN 

model
• Gradient descent based methods, such as Stochastic gradient 

descent and the Adam optimizer, are commonly used  algorithms 
for optimisation
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CNN: Training
• Backpropagation in general: ●Calculating gradients for gradient descent

●Directly deriving and calculating gradient is 
difficult, due to the complexity of DNNs

https://www.superdatascience.com/blogs/artificial-neural-networks-backpropagation
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https://www.superdatascience.com/blogs/artificial-neural-networks-backpropagation


Why training Deep Neural Networks is hard?

82Credit: Adrian Rosebrock, PyImageSearch, https://www.pyimagesearch.com/2019/10/14/why-is-my-validation-loss-lower-than-my-training-loss/ 

https://www.pyimagesearch.com/2019/10/14/why-is-my-validation-loss-lower-than-my-training-loss/


Training Methodology

83Source: Yamashita R. et al. (2018) Convolutional neural networks: an overview and applications in radiology 



Training vs. Testing Error
● Proper optimizer and training strategy can minimize the loss.
● Small training error is not always corresponding to a small testing/validation 

error.
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Data Augmentation
 Data augmentation generate different versions of a real dataset artificially to increase 

its size
 Improving the robustness of the networks
 We use data augmentation to handle data scarcity and insufficient data diversity
 Data augmentation helps to increase performance of deep neural networks

 Common augmentation techniques:
 Adding noise
 Cropping 
 Flipping
 Rotation
 Scaling
 Translation
 Brightness
 Contrast
 Saturation
 Generative Adversarial Networks (GANs)

85Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Adding noise

86Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Cropping

87Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Flipping

88Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Rotation

89Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Scaling

90Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Translation

91Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/
https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/

https://research.aimultiple.com/data-augmentation-techniques/
https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/


Data Augmentation
 Brightness

92Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Data Augmentation
 Contrast

93Source: 13 Data Augmentation Techniques. https://research.aimultiple.com/data-augmentation-techniques/

https://research.aimultiple.com/data-augmentation-techniques/


Regularization: Weight Decay
 It adds a penalty term to the loss function on the training set to reduce the 

complexity of the learned model
 Popular choice for weight decay:

 L1: The L1 penalty aims to minimize the absolute value of the weights

 L2: The L2 penalty aims to minimize the squared magnitude of the weights

94Credit: 5 Techniques to Prevent Overfitting in Neural Networks. https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-networks.html

https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-networks.html


Regularization: Dropout
 L1 and L2 reduce overfitting by modifying the cost function
 Dropout regularizes the network by randomly dropping neurons from the neural 

network during training 

95Credit: Srivastava et al., Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR, 2014
https://colab.research.google.com/github/d2l-ai/d2l-en-colab/blob/master/chapter_multilayer-perceptrons/dropout.ipynb

https://colab.research.google.com/github/d2l-ai/d2l-en-colab/blob/master/chapter_multilayer-perceptrons/dropout.ipynb


Data Preprocessing
 The pixel values in images must be scaled prior to given as input to deep neural 

networks for training or evaluation
 Three main types of pixel scaling:

 Pixel Normalization: scale pixel values to the range 0-1
 Pixel Centering: scale pixel values to have a zero mean
 Pixel Standardization: scale pixel values to have a zero mean and unit variance

96Credit: Stanford CS231n course slides.
Machine Learning Mastery: How to Normalize, Center, and Standardize Image Pixels in Keras



Batch Normalization
 Enables stable training 
 Reduces the internal covariate shift (ICS) 
 Accelerates the training process
 Reduces the dependence of gradients on the scale of the parameters

97Source: LearnOpenCV: Batch Normalization in Deep Networks. https://learnopencv.com/batch-normalization-in-deep-networks/

https://learnopencv.com/batch-normalization-in-deep-networks/


Choice of Optimizers
 Choosing right optimizer helps to update the model parameters and reducing the 

loss in much less effort
 Most DL frameworks supports various optimizers:

 Stochastic Gradient Descent (SGD)
 Momentum
 Nesterov Accelerated Gradient
 AdaGrad
 AdaDelta
 Adam
 RMSProp

98Source: Towards Data Science. Various Optimization Algorithms For Training Neural Network https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6

https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6


Tuning Hyperparameters
 Hyperparameters are all parameters which can be arbitrarily set by the user 

before starting training
 Hyperparameters are like knobs or dials of the network (model)
 An optimization problem: We aim to find the right combinations of their values 

which can help us to find either the minimum (e.g., loss) or the maximum (e.g., 
accuracy) of a function

 Many hyperparameters to tune:
 Learning rate
 No. of epochs
 Dropout rate 
 Batch size 
 No. of hidden layers and units
 Activation function
 Weight initialization 
 …

99Source: KDnuggets:  Practical Hyperparameter Optimization. https://www.kdnuggets.com/2020/02/practical-hyperparameter-optimization.html 

https://www.kdnuggets.com/2020/02/practical-hyperparameter-optimization.html


Deep Learning Frameworks/Packages
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