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Recent breakthroughs: AI, ML, DL
 Artificial Intelligence (AI): development of smart systems and machines that 

can carry out tasks that typically require human intelligence
 Machine Learning: creates algorithms that can learn from data and make 

decisions based on patterns observed. Requires human  intervention when 
decision is incorrect

 Deep Learning: uses complex and deep artificial neural networks to reach 
accurate conclusions without human intervention. Requires large-scale 
annotated data to train.

3Slide Adapted from “Deep Learning in Radiology: Recent advancements, Challenges and Future Trends, RSNA 2016 talk”



The Need: Augmented Intelligence
 Humans + Computers can achieve better performance than either alone

4Image Credit: https://www.ups.com/us/en/services/knowledge-center/article.page?name=3-principles-for-bringing-augmented-intelligence-to-life-sciences&kid=cd1a6e81 

Augmentation or Companionship

https://www.ups.com/us/en/services/knowledge-center/article.page?name=3-principles-for-bringing-augmented-intelligence-to-life-sciences&kid=cd1a6e81


Convolutional Neural Networks (CNNs)
 A class of deep neural networks suitable for processing 2D/3D data. For e.g., Images and 

Videos
 CNNs can capture high-level representation of images/videos which can be used for end-

tasks such as classification, object detection, segmentation, etc. 
 A range of CNNs improving over the years

5Source: Convolutional Neural Networks. https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9

https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9


CNN Architecture
 A typical CNN architecture consists of the following layers:
 Convolution layer
 ReLU layer (non-linearity)
 Pooling layer
 Flattening
 Fully-connected layer
 Output layer

There can be multiple steps of convolution followed by pooling, before reaching the fully 
connected layers.

6Image Credit: Convolutional Neural Networks. https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9

https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9


Vision tasks 
 Image classification: Assigning a label or class to an image
 Object detection: Locate the presence of objects with a bounding box and class of the 

located objects in an image
 Semantic segmentation: Label every pixel (pixel-wise classification)
 Instance segmentation: Differentiate instances

7Image Credit: https://medium.com/@deepeshandphone/history-of-deep-learning-on-object-detection-5c94f63ec475

https://medium.com/@deepeshandphone/history-of-deep-learning-on-object-detection-5c94f63ec475


Object detection with Faster R-CNN 
 Determine “what” and “where”
 regress the coordinates of object and classify it

 Region Proposal: R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN
 First propose the regions likely to include objects and second classify the regions and regress the 

BBOX

 R-CNN: Detect RoI by Selective Search (SS) on images, resize the regions to fixed size and let 
them flow into CNN respectively, and classify them into the classes by SVM 

8Image Credit: Grishick et al. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. CVPR 2014   



Object detection with Faster R-CNN 
 R-CNN Issues
 A split between region proposal and classification
 Too slow selective search (can’t be used in real-time)

 Fast R-CNN: Do convolution first and then selective search. Adopted RoI pooling to crop fixed 
vector from the feature map.

 Fast R-CNN:
 RoI Pooling
 Speeded up the forward propagation

by sharing convolution

9Image Credit: Grishick (2015). Fast R-CNN. ICCV 2015.



Object detection with Faster R-CNN 
 Fast R-CNN Issues
 A split between region proposal and classification was not improved
 Selective Search still too slow

 Faster R-CNN
 Adopted Region Proposal Network (RPN) 

and abolish Selective Search
 Achieved high performance 

and high speed

10Source: Sen et al. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NeurIPS 2015.



Biomedical Image Segmentation with U-net 
• U-net learns segmentation in an end-to-end setting
• Proven to be very powerful segmentation tool in scenarios with limited annotated data
• Doesn’t contain any fully connected layers

11Image Credit: https://developers.arcgis.com/python/guide/how-unet-works/
https://www.frontiersin.org/articles/10.3389/fnins.2021.662005/full

https://developers.arcgis.com/python/guide/how-unet-works/
https://www.frontiersin.org/articles/10.3389/fnins.2021.662005/full


U-net Architecture

12Source: Ronneberger et al. (2015). U-net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2015.



Case Study: Automated Analysis of 4D Fetal Echocardiogram*
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 Problem Statement
Given a 4D Fetal echocardiogram, segment the four cardiac chambers and the mitral 

and tricuspid annulus, creating a 3D model of the fetal heart at End-Diastole. 
Compute essential biometrics to assess the well-being of the fetus from this model by 

tracking it over the entire cardiac cycle.

Adult Annulus Segmentation [1].

*Joint work with Philip, Ferrieira, Tomar, Chawla, Welsh, Stevenson



Background
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 Heart is the first functional organ that develops in a fetus.
 Starts beating by Week 4
 The heart has four chambers, two atria (left and right atrium) and 

two ventricles (left and right ventricle)
 The fetus has a parallel circulation compared to the serial system in 

adults – because lungs are not functional 
 Mitral (Bicuspid) Valve (MV): opens during diastole, allows blood to 

flow down from the LA to the LV and closes during systole to prevent 
the blood from flowing back to the LA

 Tricuspid Valve (TV): opens during diastole, allows blood to flow 
down from the RA to the RV and closes during systole to prevent the 
blood from flowing back to the RA

Joint work with Philip, Ferrieira, Tomar, Chawla, Welsh, Stevenson



Background

15

 We are interested in the Annulus region, a saddle shaped 
fibrous ring, which moves up and down during a cardiac 
cycle.

 The annulus controls the opening and closing of the 
valves. 

 The vertical displacement of the mitral annulus is termed 
MAPSE

 The same of the tricuspid annulus is termed TAPSE

Adult Annulus Segmentation [1].

*Joint work with Philip, Ferrieira, Tomar, Chawla, Welsh, Stevenson

Right Atrium

Left Atrium

Four chambers of the heart.

Mitral Valve showing the fibrous annulus ring surrounding the leaflet.



Datasets
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 Dataset-1
 295 Ultrasound Volumes (Acquired by 3 operators)

 95 foetuses (Gestational Age: 20-37 weeks)
 4D data (3D + time)
 Annotations available:

 TAPSE/MAPSE measurements by 3 operators (3 
measurements each)

 Tricuspid/Mitral annuli annotated on 169 * 3D 
volumes

 Dataset-2
 385 Ultrasound Volumes (Acquired by 1 operator)

 32 foetuses
 4D data (3D + time)
 Probe used for data acquisition: E8-STIC, E10-STIC, E10-eSTIC
 Annotations available:

 6 classes: Left Atrium (LA), Left Ventricle (LV), Mitral 
Annulus (MA), Right Atrium, Right Ventricle, Tricuspid 
Annulus (TA)

 2 Annotators
 30 Volumes (each annotated in triplicates by each 

annotator)









Data Preparation
 Quality Scoring System – manually evaluated 

(out of 8)
 Volumes with a score >= 4, selected

17

Scoring Parameter Score

Visibility of

4 Chamber View 1

Aorta 1

Moderator band 1

Whole heart 1

Noise level High/Moderate/Low 1/2/3

Re-orientation required 1

TOTAL 8



1. Annulus Segmentation
 U-Net architecture used to segment the tricuspid 

and mitral annulus
 Dice Similarity Coefficient (DSC) values of 0.78 for 

Tricuspid Annulus (TA) segmentation and 0.77 for 
Mitral Annulus (MA) segmentation were achieved.

 TAPSE/MAPSE Measurement
 For TAPSE measurements, r=0.61 and RMSE=0.14 cm
 For MAPSE measurements, r=0.30 and RMSE=0.18 cm

 This automated method can provide function cardiac 
assessment where training is limited and skills lacking

 Presented @ IEEE ISBI 2019 

18M. E. Philip, A. Sowmya, H. Avnet, A. Ferreira, G. Stevenson and A. Welsh, "Convolutional Neural Networks for Automated Fetal Cardiac Assessment using 4D B-Mode Ultrasound," 2019 IEEE 16th 
International Symposium on Biomedical Imaging (ISBI 2019), 2019, pp. 824-828, doi: 10.1109/ISBI.2019.8759377.

Bland-Altman plots comparing automated TAPSE (A)
and MAPSE (B) measurements to average expert measurement.



Annulus Segmentation - Issues
 Change in orientation of the heart due to fetal or 

probe movement
 Position of the SEPTUM
 Tracking not performed to confirm End-systole and 

End-diastole

19

LA RA

LV RV

MV



2. Whole Heart Segmentation
 Instead of identifying just the SEPTUM for 

orientation-problem redefined to obtain it as a by-
product

 The heart is modelled consisting of:
 Left and Right Atrium (LA, RA)
 Left and Right Ventricles (LV, RV), and 
 Tricuspid and Mitral Annulus (TA, MA)

 Dataset-1 could not be used
Whole heart was not in view
 Zoomed in version of the thorax

20

3D render of heart model, showing cardiac chambers and anuuli.



Datasets
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 Dataset-2
 385 Ultrasound Volumes (Acquired by 1 operator)

 32 foetuses
 4D data (3D + time)
 Probe used for data acquisition: E8-STIC, E10-STIC, E10-eSTIC
 Annotations available:

 6 classes: Left Atrium (LA), Left Ventricle (LV), Mitral 
Annulus (MA), Right Atrium, Right Ventricle, Tricuspid 
Annulus (TA)

 2 Annotators
 30 Volumes (each annotated in triplicates by each 

annotator)






Issues
 Inter and Intra observer Variability
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Architectures
 CNN based models:
 U-Net
 V-Net
 Res-UNet

 Transformer-based models:
 TransBTS
 Unet-R

23



Training details
 Training data:

 Training Parameters

24



Whole Heart Segmentation
1. Position Fixing
Manually repositioned to

 Apex down – flipping data up/down
 Mitral Annulus visible on the right 

side – flipping data left/right

25M. E. Philip et al., "A Machine Learning Framework for Fully Automatic 3D Fetal Cardiac Ultrasound Evaluation," 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1-5, doi: 
10.1109/ISBI52829.2022.9761613.

2. Localisation (along coronal axis)
 SVM classifier trained to classify 

coronal slices to foreground / 
background



Segmentation results
 No matter the architecture used, clear performance improvement with data enhancement 
 Performance improvement with data enhancement
 19% ↑ in DSC for CNNs and a 16% ↑  for transformer-based networks

26

Comparison of segmentation performance measured by DSC for multiple deep learning methods. Segmentation was performed using models 
trained on data using three different enhancements (A = Augmentation only; P = Augmentation + Position Fixing; L = Augmentation + 

Position Fixing + Localization). Best accuracy for each class is shown in bold

M. E. Philip et al., "A Machine Learning Framework for Fully Automatic 3D Fetal Cardiac Ultrasound Evaluation," 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1-5, doi: 
10.1109/ISBI52829.2022.9761613.



Results analysis
 Physical size constraints reflected in segmentation results
 Segmentation performance of ventricles > atria > annuli 

 U-Net gave the best results 
 V-Net, UNet-R and Res-UNet highly sensitive to noise and fails to learn the general 

shape of the region 
 TransBTS very similar architecture to U-Net except for the transformer block – results 

very close to U-Net

 Mean DSC improvement after data enhancement:
 U-Net: 0.12
 V-Net: 0.18 
 Res-UNet: 0.28 
 TransBTS: 0.22 
 UNETR: 0.11

27M. E. Philip et al., "A Machine Learning Framework for Fully Automatic 3D Fetal Cardiac Ultrasound Evaluation," 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1-5, doi: 
10.1109/ISBI52829.2022.9761613.



3. Automatic segmentation of human placenta in 3D Ultrasound
 The placenta is a critical and complex 

organ that provides oxygen and nutrition to 
the growing fetus and removes waste from 
its blood

 Fetal health strongly depends on the 
functionality of the placenta

 Any abnormality of the placenta could be 
harmful to the fetus and the mother

 Assessment of placenta in vivo across 
gestation is critical to understand placental 
structure, function, and development

28Image Credit: Cleveland Clinic 2021



Need for 3D placenta volume segmentation
 2D US is the standard clinical imaging modality used 

for accessing placental health and diagnosis of its 
abnormalities

 In 2D US imaging, physician create 3D model in their 
mind and subjectively determine volume, location, 
and features of the placenta – challenging task 

 Need – To automatically segment placenta in 3D 
(voxel-level classification) for qualitative and 
quantitative analysis

 Manual segmentation of the placenta is time-
consuming and have high inter-observer and intra-
observer variability

 Automatic 3D placenta segmentation could be used 
in clinical practice for monitoring conditions that result 
in pregnancy and birth complications such as PAS, 
fetal growth restriction, and suspicion of intrauterine 
fetal demise

29Image Source: Sakurra/Shutterstock.com 
https://www.news-medical.net/news/20211116/SARS-CoV-2-replicates-in-human-placenta-with-release-of-infectious-viral-particles.aspx 

https://www.news-medical.net/news/20211116/SARS-CoV-2-replicates-in-human-placenta-with-release-of-infectious-viral-particles.aspx


Dataset
 Total 400 studies having Gray-scale (B-

mode) and power doppler (PD) 
volumes are provided

 For ground-truth (GT) segmentation 
mask, manual annotation and the best 
‘threshold’ images are computed using 
the following rules:
 use same image in case there is only 

one annotated (segmented) image
 compute intersection image (i.e., voxel-

wise logical AND operation) in case 
there are two annotated (segmented) 
images
 compute image based on majority 

voxel-wise voting in case there are 
three annotated (segmented) images

30Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]



Dataset Pre-processing

 Pre-processing needed to make data suitable for the framework.
 Pre-processing:
 3D volumes should be of same isotropic size (same size in x, y, z direction)
 data to be provided in numbered format with each sample in folders from 0 to X, where X is the 

maximum number of studies

 All data (B-mode US, Power Doppler US, and annotated masks) were resized to 64 x 64 x 64
 B-mode and PD volumes are normalized by rescaling pixel values between range 0 to 255. 

31Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]



Experimental setup
 Data split into training (60%), validation (20%), and testing (20%) without any data leakage 

(no patient overlap within sets)
 400 studies divided as below:
 training -> 240 
 validation -> 80
 testing -> 80

 Data divided into 5 folds, keeping same ratio in each fold (240 training, 80 validation, and 80 
testing)

32Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]



Fusion strategies
 Early-fusion: concatenates original features at the input level
 Multi-stage or joint-fusion: concatenates extracted features
 Late-fusion: aggregates predictions at the decision level 

33Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]



Methodology

34Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]



Results

35Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]



Results

36Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]



Qualitative Results
 DSC: 0.7135

Jaccard Index: 0.5546
Hausdorff Distance (HD95): 9.4339 
MSD: 304.4385

37Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]



Qualitative Results
 DSC: 0.9039

Jaccard Index: 0.8247
Hausdorff Distance (HD95): 3.0000 
MSD: 0.7189

38Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]



Next steps – Whole placenta segmentation
 Placenta size grows with the gestation age
 It is hard to capture entire placenta at late 

gestation 
 Limited field-of-view (FOV)
 A single US probe have too small FOV to 

capture the whole placenta
 The  Need – Stitching
 The entire placenta can be captured by 

acquiring, aligning, and stitching multiple 3D 
US images to get large FOV

39Source: Adeyekun et al. (2015). Relationship between 2-D ultrasound measurement of placental thickness and estimated fetal weight. 
Image source: Zimmer et al. (2019). Towards Whole Placenta Segmentation at Late Gestation using multi-view US images. MICCAI.



Whole placenta segmentation
 Placenta size grows with the gestation age


40Source: Zimmer et al. (2023).  Placenta Segmentation in Ultrasound Imaging: Addressing Sources of Uncertainty and Limited Field-of-View. Medical Image Analysis. 2023. 



Other Medical Imaging and Informatics projects

Copyright: UNSW CSE Computer Vision Group
*Projects shown are undertaken by PhD, MPhil and Hons Thesis candidates and are supervised by academics in Computer Vision group at UNSW 
CSE in collaboration with clinical collaborators.

41

Automated Extraction of ARPD from lung 
MDCT Images

Analysis and Enhancement of MR 
Neuroimages

Diagnosis of Neurodegenerative disease 
using Deep Multimodal Analysis

Training Radiomics-based CNNs for 
Clinical Outcome Prediction Medical Visual Question Answering (Med-VQA) Early Detection of Alzheimer’s Disease 

using ML















Other Medical Imaging and Informatics projects

42

Vertebral Compression Fracture (VCF) 
Detection in CT images Prostate Segmentation from MR Images Multimodal Severity Detection for Black 

Lung Disease

Quantification and Severity Estimation of 
Acute Diverticulitis

Automated Segmentation of Coronary 
Arteries

Multi-organ and Tumor Segmentation from 
Abdominal CT images

Copyright: UNSW CSE Computer Vision Group
*Projects shown are undertaken by PhD, MPhil and Hons Thesis candidates and are supervised by academics in Computer Vision group at UNSW 
CSE in collaboration with clinical collaborators.



Concluding Remarks
 Computational methods have an increasing role in medical imaging
 Challenges
 big raw data but limited curated data
 combining imaging and non-imaging data
 data visualisation
 moving from 2D to 3D
 explainable and interpretable models 
 ethical and legal dilemmas

43
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