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Recent breakthroughs: Al, ML, DL

» Artificial Intelligence (Al): development of smart systems and machines that

The Future of

can carry out tasks that typically require human intelligence Humankind S7€Q &
» Machine Learning: creates algorithms that can learn from data and make S
decisions based on patterns observed. Requires human intervention when W’
decision is incorrect Healthcal.‘e
. . Transformation
» Deep Learning: uses complex and deep artificial neural networks to reach ArtifcalIntlligence, Automation, and Robtics

accurate conclusions without human intervention. Requires large-scale

annotated data to train.

ARTIFICIAL
INTELLIGENCE

MACHINE

LEARNING
DEEP
LEARNING
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UNSW  slide Adapted from “Deep Learning in Radiology: Recent advancements, Challenges and Future Trends, RSNA 2016 talk” 3
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The Need: Augmented Intelligence

» Humans + Computers can achieve better performance than either alone

Harvard
Business . . s s : i
Review Innovation | AI Will Change Radiology, but It Won’t Replace Radiologists

Al Will Change Radiology,
but It Won’t Replace

In contrast to automation,

Radiologists augmentation presumes
by Thomas H. Davenport and Keith J. Dreyer, DO thﬂf smart hlﬂ?’lﬂf’ls {Iﬂd
March 27, 2018

smart machines can coexist

Augmentation or Companionship

and create better outcomes
than either could alone. Al
systems may perform some
health care tasks with
limited human

interverntion, th.ereby

freeing clinicians to

perform higher-level tasks.”

UNSW  Image Credit: https://www.ups.com/us/en/services/knowledge-center/article.page?name=3-principles-for-bringing-augmented-intelligence-to-life-sciences&kid=cd1a6e81
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Convolutional Neural Networks (CNNs)

» A class of deep neural networks suitable for processing 2D/3D data. For e.g., Images and
Videos

» CNNs can capture high-level representation of images/videos which can be used for end-
tasks such as classification, object detection, segmentation, etc.

» A range of CNNs improving over the years

28% AlexNet, 8 layers
26% d
7 ZF, B layers
VGG, 19 layers
' GoogleNet, 22 layers
' ResNet, 152 layers
(Ensemble)
~ SENet

Human error

| shallow
- =

100% nd rediability not realisti
2010 2011 2012 2013 2014 2015 2016 2017 accuracy and reliability not realistic

[ Traditional computer vision
B Cocp learming compuiern vision

UNSW  Source: Convolutional Neural Networks. https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9
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https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9

CNN Architecture

» A typical CNN architecture consists of the following layers:
» Convolution layer
» RelU layer (non-linearity)
» Pooling layer

Input

i T Output
» Flattenin : . . s
g Pooling Pooling Pooling s u a‘{\\\\%“\-
=N . N Ne-
» Fully-connected layer T ollec e Horse
e ‘ Zebra
» Output layer - — Dog
: Softh?x
Convolution Convolution  Convolution — P;Etr']"c’aﬁt('ﬁ]“
Kernel ReLU ReLU ReLU Flatten
Layer Ful
ulty
- Feature Maps ‘—Colr_\nected;
ayer
| N
Feature Extraction Classification PDfigR?bbﬂiS;':

» There can be multiple steps of convolution followed by pooling, before reaching the fully
connected layers.

UNSW Image Credit: Convolutional Neural Networks. https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9
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https://medium.com/@rajat.k.91/convolutional-neural-networks-why-what-and-how-f8f6dbebb2f9

Vision tasks

» Image classification: Assigning a label or class to an image

» Object detection: Locate the presence of objects with a bounding box and class of the
located objects in an image

» Semantic segmentation: Label every pixel (pixel-wise classification)

» Instance segmentation: Differentiate instances

(a) Image Classification (b) Object Detection

(c) Semantic Segmentation (d) Instance Segmentation

UNSW Image Credit: https://medium.com/@deepeshandphone/history-of-deep-learning-on-object-detection-5¢94f63ec475
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Object detection with Faster R-CNN

» Determine “what” and “where”
» regress the coordinates of object and classify it

» Region Proposal: R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN

» First propose the regions likely to include objects and second classify the regions and regress the
BBOX

» R-CNN: Detect Rol by Selective Search (SS) on images, resize the regions to fixed size and let
them flow into CNN respectively, and classify them into the classes by SVM

R-CNN: Regions with CNN features

warped region 5 aeroplane? no.

person? yes.

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

tvmonitor? no.

UNSW  Image Credit: Grishick et al. (2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. CVPR 2014
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Object detection with Faster R-CNN

» R-CNN lIssues
» A split between region proposal and classification
» Too slow selective search (can’t be used in real-time)

» Fast R-CNN: Do convolution first and then selective search. Adopted Rol pooling to crop fixed

vector from the feature map.

» Fast R-CNN:
» Rol Pooling
» Speeded up the forward propagation
by sharing convolution

W 2R Rol
\\| 7} _,—~projection‘\

Conv

UNSW Image Credit: Grishick (2015). Fast R-CNN. ICCV 2015.
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Object detection with Faster R-CNN

» Fast R-CNN lIssues
» A split between region proposal and classification was not improved
» Selective Search still too slow

classifier

» Faster R-CNN '
» Adopted Region Proposal Network (RPN) i
and abolish Selective Search pmmw/
» Achieved high performance '

and h |g hs pee d Region Proposal Network

conv layers /

T 77

——

it

UNSW Source: Sen et al. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NeurlPS 2015.
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Biomedical Image Segmentation with U-net

 U-net learns segmentation in an end-to-end setting
* Proven to be very powerful segmentation tool in scenarios with limited annotated data

 Doesn’t contain any fully connected layers

Segmentation Predicted Ground truth
T2w MRI Volume ~Network Segmentation Segmentation

UNSW Image Credit: https://developers.arcgis.com/python/guide/how-unet-works/
sssss https://www.frontiersin.org/articles/10.3389/fnins.2021.662005/full
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https://www.frontiersin.org/articles/10.3389/fnins.2021.662005/full

U-net Architecture
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UNSW  Source: Ronneberger et al. (2015). U-net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2015.
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Case Study: Automated Analysis of 4D Fetal Echocardiogram™

> Problem Statement

Given a 4D Fetal echocardiogram, segment the four cardiac chambers and the mitral
and tricuspid annulus, creating a 3D model of the fetal heart at End-Diastole.
Compute essential biometrics to assess the well-being of the fetus from this model by
tracking it over the entire cardiac cycle.

Adult Annulus Segmentation [1].

USN;%W *Joint work with Philip, Ferrieira, Tomar, Chawla, Welsh, Stevenson 13



Background

» Heart is the first functional organ that develops in a fetus.
» Starts beating by Week 4

» The heart has four chambers, two atria (left and right atrium) and
two ventricles (left and right ventricle)

» The fetus has a parallel circulation compared to the serial system in
adults — because lungs are not functional

» Mitral (Bicuspid) Valve (MV): opens during diastole, allows blood to
flow down from the LA to the LV and closes during systole to prevent
the blood from flowing back to the LA

» Tricuspid Valve (TV): opens during diastole, allows blood to flow
down from the RA to the RV and closes during systole to prevent the
blood from flowing back to the RA

UNSW Joint work with Philip, Ferrieira, Tomar, Chawla, Welsh, Stevenson
R
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Background

» We are interested in the Annulus region, a saddle shaped
fibrous ring, which moves up and down during a cardiac
cycle.

Right Atrium

» The annulus controls the opening and closing of the
valves.

» The vertical displacement of the mitral annulus is termed
MAPSE

» The same of the tricuspid annulus is termed TAPSE

<\-—-_\
R > Chordae Tendineae

Papillary Muscles

Open mitral valve Closed mitral valve

Mitral Valve showing the fibrous annulus ring surrounding the leaflet.

— Adult Annulus Segmentation [1].
Uﬁﬁw *Joint work with Philip, Ferrieira, Tomar, Chawla, Welsh, Stevenson
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Datasets

> Dataset-1

» 295 Ultrasound Volumes (Acquired by 3 operators)
> 95 foetuses (Gestational Age: 20-37 weeks)
> 4D data (3D + time)

» Annotations available:

» TAPSE/MAPSE measurements by 3 operators (3
measurements each)

» Tricuspid/Mitral annuli annotated on 169 * 3D
volumes

> Dataset-2

> 385 Ultrasound Volumes (Acquired by 1 operator)

» 32 foetuses

» 4D data (3D + time)

» Probe used for data acquisition: E8-STIC, E10-STIC, E10-eSTIC
» Annotations available:

» 6 classes: Left Atrium (LA), Left Ventricle (LV), Mitral
Annulus (MA), Right Atrium, Right Ventricle, Tricuspid
Annulus (TA)

> 2 Annotators

» 30 Volumes (each annotated in triplicates by each
annotator)

16









Data Preparation

» Quality Scoring System — manually evaluated

(out of 8)

» Volumes with a score >= 4, selected

Scoring Parameter Score
4 Chamber View 1
Aorta 1
Visibility of

Moderator band 1
Whole heart 1

Noise level High/Moderate/Low 1/2/3
Re-orientation required 1
TOTAL 8

Manna Elizabeth Philip

Qualitative Score Fetal Echocardiogram - Excel
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1. Annulus Segmentation

» U-Net architecture used to segment the tricuspid
and mitral annulus

» Dice Similarity Coefficient (DSC) values of 0.78 for
Tricuspid Annulus (TA) segmentation and 0.77 for
Mitral Annulus (MA) segmentation were achieved.

» TAPSE/MAPSE Measurement 050 ] ool -
» For TAPSE measurements, r=0.61 and RMSE=0.14 cm g =] £ 03] o
> For MAPSE measurements, r=0.30 and RMSE=0.18 cm  j o=} ", Jempete
%—0:107 :.5_'_.‘. % 0:10« < ° °
= -0.20 ~ e® = -0.20 A ° 3
» This automated method can provide function cardiac """
assessment where training is limited and skills lacking Sumrzas TaRSE Sorage ML

Bland-Altman plots comparing automated TAPSE (A4)

> Prese nted @ I E E E IS BI 2019 and MAPSE (B) measurements to average expert measurement.

UNSW M. E. Philip, A. Sowmya, H. Avnet, A. Ferreira, G. Stevenson and A. Welsh, "Convolutional Neural Networks for Automated Fetal Cardiac Assessment using 4D B-Mode Ultrasound," 2019 IEEE 16th 18
YYYYYY International Symposium on Biomedical Imaging (ISBI 2019), 2019, pp. 824-828, doi: 10.1109/ISBI.2019.8759377.



Annulus Segmentation - Issues

» Change in orientation of the heart due to fetal or
probe movement

> Position of the SEPTUM

» Tracking not performed to confirm End-systole and
End-diastole

UNSW

YYYYYY
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2. Whole Heart Segmentation

» Instead of identifying just the SEPTUM for
orientation-problem redefined to obtain it as a by-
product

» The heart is modelled consisting of:
» Left and Right Atrium (LA, RA)
» Left and Right Ventricles (LV, RV), and
» Tricuspid and Mitral Annulus (TA, MA)

» Dataset-1 could not be used
» Whole heart was not in view
» Zoomed in version of the thorax

UNSW

YYYYYY

3D render of heart model, showing cardiac chambers and anuuli.
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Datasets
> Dataset-2

> 385 Ultrasound Volumes (Acquired by 1 operator)

» 32 foetuses

> 4D data (3D + time)

» Probe used for data acquisition: E8-STIC, E10-STIC, E10-eSTIC
» Annotations available:

> 6 classes: Left Atrium (LA), Left Ventricle (LV), Mitral
Annulus (MA), Right Atrium, Right Ventricle, Tricuspid
Annulus (TA)

> 2 Annotators

» 30 Volumes (each annotated in triplicates by each
annotator)

UNSW

s
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Issues

» Inter and Intra observer Variability
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Architectures

» CNN based models:
» U-Net
> V-Net
» Res-UNet

> Transformer-based models:
> TransBTS
> Unet-R



 Training details
» Training data:

Murmber of patients 20

Total annotated ED wvolumes 30

Test volumes 5 (5 patients)

Test Patient IDs 1,7,10,25,32 (Fold 1)

» Training Parameters

Auzmentation Rotation at £(2,6,9)°, Gaussianm noise, Salt and Pepper noise
Training samples after augmentation 2100

Trainf Validation split 20/10

Epochs trained for 100

Optimizer Adam

Learning rate 1a-d

Batch size 2

Data Size 54 *54 *54




Whole Heart Segmentation

1. Position Fixing
» Manually repositioned to
» Apex down — flipping data up/down

» Mitral Annulus visible on the right
side — flipping data left/right

T Reject

INPUT

3D

2. Localisation (along coronal axis)
» SVM classifier trained to classify
coronal slices to foreground /

background

i Volume
Pick ED

¥ Frame [———*

Quality
scoring

Position
Fixing

4D Raw STIC
Volume

Lecalization
(aleng Coronal
slices)

3D
Segmentation
(Conwv- or TF-
based

architecture)

Flowchart outlining the proposed pipeline.

SYDNE 10.1109/1SB152829.2022.9761613.

OUTPUTS

3D Sesmentation
of heart
chambers and
two annuli.

Orientation of
the heart (Plane
passing through

the septum)

UNSW M. E. Philip et al., "A Machine Learning Framework for Fully Automatic 3D Fetal Cardiac Ultrasound Evaluation," 2022 IEEE 19th International Symposium on Biomedical Imaging (I1SBI), 2022, pp. 1-5, doi:
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Segmentation results

» No matter the architecture used, clear performance improvement with data enhancement

» Performance improvement with data enhancement
» 19% 1 1n DSC for CNNs and a 16% 1 for transformer-based networks

Type | Architecture | Enh. | LV RV LA RA TA MA
A 0.60 0.67 040 0.69 048 0.37

U-Net [7] P 076 070 055 074 049 042

L 0.82 0.77 0.62 072 050 0.47

. 4 A 054 052 0.16 046 032 022
NN-Based | v/ nNet [13] P 064 065 038 0.66 042 0.39
L 0.74 0.73 0.44 065 039 0.37

A 036 032 026 048 024 0.16

Res U-Net [14] | P 063 063 040 071 042 0.37

L 0.74 0.76 0.53 0.68 042 0.36

A 059 055 026 0.60 035 021

TransBTS [15] | P 074 069 059 075 049 0.47

TE-Based L 0.80 0.78 0.65 072 045 0.46
A 053 049 026 054 022 0.16

U-NetR [16] P 066 062 037 0.67 031 0.31

L 0.70 0.67 035 057 028 0.26

Comparison of segmentation performance measured by DSC for multiple deep learning methods. Segmentation was performed using models
trained on data using three different enhancements (A = Augmentation only; P = Augmentation + Position Fixing, L = Augmentation +
Position Fixing + Localization). Best accuracy for each class is shown in bold

UN W M.E. Philip et al., "A Machine Learning Framework for Fully Automatic 3D Fetal Cardiac Ultrasound Evaluation," 2022 IEEE 19th International Symposium on Biomedical Imaging (I1SBI), 2022, pp. 1-5, doi:
PPN 10.1109/1SB152829.2022.9761613.



Results analysis

» Physical size constraints reflected in segmentation results
» Segmentation performance of ventricles > atria > annuli

» U-Net gave the best results

» V-Net, UNet-R and Res-UNet highly sensitive to noise and fails to learn the general
shape of the region

» TransBTS very similar architecture to U-Net except for the transformer block — results
very close to U-Net

» Mean DSC improvement after data enhancement:
» U-Net: 0.12
» V-Net: 0.18
» Res-UNet: 0.28
» TransBTS: 0.22
» UNETR: 0.11

UNSW M. E. Philip et al., "A Machine Learning Framework for Fully Automatic 3D Fetal Cardiac Ultrasound Evaluation," 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1-5, doi:
aem N 10.1109/1SBI52829.2022.9761613.



3. Automatic segmentation of human placenta in 3D Ultrasound

» The placenta is a critical and complex
organ that provides oxygen and nutrition to

the growing fetus and removes waste from
its blood

»> Fetal health strongly depends on the
functionality of the placenta

» Any abnormality of the placenta could be
harmful to the fetus and the mother

» Assessment of placenta in vivo across
gestation is critical to understand placental
structure, function, and development

YYYYYY
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Need for 3D placenta volume segmentation

» 2D US is the standard clinical imaging modality used
for accessing placental health and diagnosis of its
abnormalities

» In 2D US imaging, physician create 3D model in their
mind and subjectively determine volume, location,
and features of the placenta — challenging task

» Need — To automatically segment placenta in 3D
(voxel-level classification) for qualitative and
quantitative analysis

» Manual segmentation of the placenta is time-
consuming and have high inter-observer and intra-
observer variability

» Automatic 3D placenta segmentation could be used
in clinical practice for monitoring conditions that result
in pregnancy and birth complications such as PAS,
fetal growth restriction, and suspicion of intrauterine
fetal demise

UNSW  Image Source: Sakurra/Shutterstock.com 29

ey N https://www.news-medical.net/news/20211116/SARS-CoV-2-replicates-in-human-placenta-with-release-of-infectious-viral-particles.aspx



https://www.news-medical.net/news/20211116/SARS-CoV-2-replicates-in-human-placenta-with-release-of-infectious-viral-particles.aspx

Dataset

» Total 400 studies having Gray-scale (B-
mode) and power doppler (PD)
volumes are provided

» For ground-truth (GT) segmentation |
mask, manual annotation and the best .0
‘threshold” images are computed using
the following rules:

» use same image in case there is only
one annotated (segmented) image

» compute intersection image (i.e. voxel—u_
wise logical AND operation) in case
there are two annotated (segmented)
Images

» compute image based on majority
voxel-wise voting in case there are
three annotated (segmented) images

UNSW Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]
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Dataset Pre-processing

(a) B-mode Axial (b) B-mode Coronal (c) B-mode Sagittal

» Pre-processing needed to make data suitable for the framework.

» Pre-processing:
» 3D volumes should be of same isotropic size (same size in x, vy, z direction)

» data to be provided in numbered format with each sample in folders from 0 to X, where X is the
maximum number of studies

» All data (B-mode US, Power Doppler US, and annotated masks) were resized to 64 x 64 x 64

» B-mode and PD volumes are normalized by rescaling pixel values between range O to 255.

UNSW Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted] 31
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Experimental setup

» Data split into training (60%), validation (20%), and testing (20%) without any data leakage
(no patient overlap within sets)

» 400 studies divided as below:
» training -> 240
» validation -> 80
» testing -> 80

» Data divided into 5 folds, keeping same ratio in each fold (240 training, 80 validation, and 80
testing)

UNSW Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]
A

YYYYYY



Fusion strategies

» Early-fusion: concatenates original features at the input level
» Multi-stage or joint-fusion: concatenates extracted features

» Late-fusion: aggregates predictions at the decision level

My B-mode @ Feature [ Model Prediction
~ Power Doppler @) Extracted Feature B Output

Model | Aggregation |

Model - § * *
Meural MNeural
Network 1 Network 2 Model 1 Model 2
Early Fusion Multi-stage Fusion Late Fusion

UNSW Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]
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Methodology

ﬂa}Training

e B-mode

| )\ :
‘= Power Depple?“ -
Fusion Strategy

Segmentation
S| Network

(a) Early Fusion
(b) Mid-level Fusion

(b) Networks
(U-Net and its variants)

4
i

(c) Late Fusion /
B N

I
[ | |
. - S T AT
{ et ¥ [l TR Ho
e '-{'l.- "\._— i '.:J-'... 5 o "-"h- -
- *-\.:': ” P T
¢ S
w3 P | “*—i _'
P N ] e
£y ‘\v_ b Ll
.1:\._| o L NS Lo . Tues 1 1
"L "x{"“" A Up-canigling

UNSW Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]
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Results

- UNSW Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]

YYYYYY

Segmentation results comparing U-Net model performance for five folds of the final dataset
with each fold having #train=240, #validation=80, and #test=80 3D ultrasound vol-
umes. Results are averaged values over all studies in the test set with + standard deviation
of metric for that test set.

Fold# (Dataset) DSC Jaccard Index HD (mm) MSD (mm)
Fold 1 0.823 + 0.101 0.708 + 0.102  8.645 + 6.322  1.501 + 0.454
Fold 2 0.825 + 0.058 0.706 + 0.076  7.920 + 4.665 1.505 + 0.631
Fold 3 0.823 + 0.064 0.704 + 0.082 10.500 + 6.111 1.664 + 0.887
Fold 4 0.814 + 0.075 0.692 + 0.093 7.978 + 4839  1.722 + 0.912
Fold 5 0.821 + 0.045 0.698 + 0.062 8.262 + 4.420 1.572 + 0.408

Segmentation results comparing U-Net++ model performance for five folds of the final
dataset with each fold having #train=240, #validation=80, and #test=80 3D ultrasound
volumes. Results are averaged values over all studies in the test set with + standard
deviation of metric for that test set.

Fold# (Dataset) DSC Jaccard Index HD (mm) MSD (mm)
Fold 1 0.828 + 0.076 0.706 + 0.067 4.898 + 3.156 1.196 + 0.752
Fold 2 0.819 + 0.042 0694 + 0.113 7.348 +5.245 2.039 + 0.574
Fold 3 0.824 + 0.056 0.700 + 0.018 7.615 + 4.758 1.502 + 0.626
Fold 4 0.833 +£ 0.107 0.715 + 0.045 4.690 + 3.167 1.340 + 0.285
Fold 5 0.840 + 0.072 0.725 + 0.057 4.123 + 3.032 1.177 + 0.377
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Resu Its Segmentation results with and without data augmentation. Results are averaged values
over all studies in the test set with + standard deviation of metric for that test set.

Method DSC Jaccard Index HD (mm) MSD (mm)
U-Net, without data augmentation 0.824 0.700 7.615 1.502
U-Net, with data augmentation 0.833 0.714 4.690 1.340
U-Net++, without data augmentation 0.839 0.722 7.141 1.279
U-Net++, with data augmentation 0.847 0.725 4.123 1.177

Segmentation results applying applying early fusion, intermediate fusion, and late fusion for
the two modalities, namely, B-mode and Power Doppler 3D ultrasound volumes. Results
are averaged values over all studies in the test set with + standard deviation of metric for
that test set.

Method DSC Jaccard Index HD (mm) MSD (mm)
Early fusion (U-Net, without data augmentation) 0.831 0.711 8.944 1.078
Intermediate fusion (U-Net, without data augmentation) 0.825 0.702 5.196 1.484
Late fusion (U-Net, without data augmentation) 0.818 0.693 9.110 1.582

~ Early fusion (U-Net++, without data augmentation) ~ 0.847 0725 4472 1.137
Intermediate fusion (U-Net++, without data augmentation) 0.831 0.710 5.830 1.442
Late fusion (U-Net++, without data augmentation) 0.826 0.704 16.643 1.229

" Early fusion (U-Net, with data augmentation) =~~~ 0.838 0722 4808 1.144
Intermediate fusion (U-Net, with data augmentation) 0.829 0.708 7.071 1.818
Late fusion (U-Net, with data augmentation) 0.822 0.698 7.549 2.229

~ Early fusion (U-Net++, with data augmentation) 0840 0738 4051 1.007
Intermediate fusion (U-Net++, with data augmentation) 0.839 0.722 7.141 1.279
Late fusion (U-Net++, with data augmentation) 0.835 0.717 10.295 1.025

UNSW Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]
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Qualitative Results
> DSC:0.7135

Jaccard Index: 0.5546 - -

(b) B-mode Coronal

Hausdorff Distance (HD95): 9.4339
MSD: 304.4385 Y o

(d) PO Axial (e) PD Coronal (f) PD Sagittal

(g) GT Axial (h) GT Coronal (i) GT Sagittal

(i) Predicted Axial (k) Predicted Coronal (1} Predicted Sagittal

UNSW Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]
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Qualitative Results

» DSC: 0.9039 =3
Jaccard Index: 0.8247 e S— prm—
Hausdorff Distance (HD95): 3.0000
MSD: 0.7189

(d) PO Axial (2) PD Coronal (f) PD Sagittal

~,

(g) GT Axial (h) GT Coronal (i) GT Sagittal

-,

(i) Predicted Axial (k) Predicted Coronal (1) Predicted Sagittal

UNSW Singh et al., "Automatic 3D Multi-modal Ultrasound Segmentation of Human Placenta using Fusion strategies and Deep Learning”, Ultrasound in Medicine and Biology, 2023 [Submitted]
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Next steps — Whole placenta segmentation

Estimated MeantSD

» Placenta size grows with the gestation age gestational Placenta Estimated
] ] age (weeks) thickness (mm) fetal weight (g)

» It is hard to capture entire placenta at late 15 22.6+2.5 147.0416.5

. 16 22.5+1.9 181.5+17.4

gestation 17 26.020.0 2125200

. . . . 18 24.0+0.2 233.3+40.0

» Limited field-of-view (FOV) 19 27,6428 330 52217

. 20 29.1+5.6 357.8+31.2

» A single US probe have too small FOV to o1 27.844.9 4217+36.5

22 31.5+5.2 542 5+63.9

capture the whole placenta > 31502 292.5+03.9

. . 24 31.9+3.9 691.5+64.6

» The Need - StItChIng 25 307:2.7 805.3446.0

. 26 33.2+3.4 963.5+68.9

» The entire placenta can be captured by 27 34,03.2 1060.7466.8
acquiring, aligning, and stitching multiple 3D i~ P e

UsS images to get large FOV 30 38.9+5.9 1539.3+211.9

31 36.0+5.3 1617.0+137.0

32 33.5+3.5 1766.6+206.7

33 38.8+6.4 2148 1+202.7

34 39.0+5.3 2348.1+106.1

35 41.4+11.6 2292 .4+764.9

36 40.9+7.2 2710.0+275.2

37 40.1+4.8 2884 .8+251.6

38 38.5+2.5 3148.4+505.4

39 39.3+4.4 3187.4+305.4

40 39.3+5.7 3304.8+284 .6

SD: Standard deviation
UNSW Source: Adeyekun et al. (2015). Relationship between 2-D ultrasound measurement of placental thickness and estimated fetal weight. 39
oA NE Image source: Zimmer et al. (2019). Towards Whole Placenta Segmentation at Late Gestation using multi-view US images. MICCAI.



Whole placenta segmentation

» Placenta size grows with the gestation age
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(a) Single US images

(b) Multi-view US images

UNSW Source: Zimmer et al. (2023). Placenta Segmentation in Ultrasound Imaging: Addressing Sources of Uncertainty and Limited Field-of-View. Medical Image Analysis. 2023.
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Other Medical Imaging and Informatics projects

Automated Extraction of ARPD from lung
MDCT Images

) )

) )

Training Radiomics-based CNNs for
Clinical Outcome Prediction

Q: With what modality is
Q—j this image taken?

( A: AN - angiogram

(a) Modality category example

Q: What is most alarming
about this MRI?
A: Schwannoma

(c) Abnormality category example

Analysis and Enhancement of MR
Neuroimages

Q: What is the plane of
this MRI?
A: Sagittal

(b) Plane category example

Q: The CT scan shows
what organ system?
A: Spine and contents

(d) Organ system category example

Diagnosis of Neurodegenerative disease
using Deep Multimodal Analysis

J
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Retinal Vessel Segmentation
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Data Collection Preprocessing Classification

Early Detection of Alzheimer’s Disease

using ML
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Other Medical Imaging and Informatics projects

Vertebral Compression Fracture (VCF)
Detection in CT images

‘ \ ‘ | Ground Truth Prediction ' Comparison

Multimodal Severity Detection for Black
Lung Disease

Prostate Segmentation from MR Images

)
3
|
Quantification and Severity Estimation of Automated Segmentation of Coronary Multi-organ and Tumor Segmentation from
Acute Diverticulitis Arteries Abdominal CT images

COutput#l

‘" =
3 Sigmoid with+® Output#2




Concluding Remarks

» Computational methods have an increasing role in medical imaging

» Challenges
» big raw data but limited curated data
» combining imaging and non-imaging data
» data visualisation
» moving from 2D to 3D
» explainable and interpretable models
» ethical and legal dilemmas
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