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COMP9517: Computer Vision

Pattern Recognition Part 2



Pattern Recognition (First Lecture)
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• Pattern recognition concepts
‒ Definition and description of basic terminology
‒ Recap of feature extraction and representation

• Supervised learning for classification
‒ Nearest class mean classification
‒ K-nearest neighbours classification
‒ Bayesian decision theory and classification
‒ Decision trees for classification
‒ Ensemble learning and random forests



Pattern Recognition (Second Lecture)
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• Supervised learning for classification
‒ Linear classification
‒ Support vector machines
‒ Multiclass classification
‒ Classification performance evaluation

• Supervised learning for regression
‒ Linear regression
‒ Least-squares regression
‒ Regression performance evaluation



Separability

• Separable classes
If a discrimination subspace exists that separates the feature space such that 
only objects from one class are in each region, then the recognition task is said 
to have separable classes

• Linearly separable
If the object classes can be separated using a hyperplane as the discrimination 
subspace, the feature space is said to be linearly separable
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Source

Linearly separable non-linearly separable

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/linear_classification.html


Linear Classifier
• Given a training set of 𝑁𝑁 observations:

• A binary classification problem can be modeled by a separation 
function 𝑓𝑓(𝑥𝑥) using the data such that:

𝑓𝑓 𝑥𝑥𝑖𝑖 = �> 0 if 𝑦𝑦𝑖𝑖 = +1
< 0 if 𝑦𝑦𝑖𝑖 = −1

• So in this approach 𝑦𝑦𝑖𝑖𝑓𝑓 𝑥𝑥𝑖𝑖 > 0
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𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑥𝑥𝑖𝑖∈ ℝ𝑑𝑑 , 𝑦𝑦𝑖𝑖∈ −1,1 , 𝑖𝑖 = 1, … ,𝑁𝑁



Linear Classifier
• A linear classifier has the form:

𝑓𝑓 𝑥𝑥 = 𝑊𝑊𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + ⋯+ 𝑤𝑤𝑑𝑑𝑥𝑥𝑑𝑑 + 𝑏𝑏

• Corresponding to a line in 2D, a plane in 3D, and a hyperplane in nD

• We use the training data to learn the weights 𝑊𝑊 and offset 𝑏𝑏
• 𝑥𝑥𝑖𝑖 are features
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Source

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47


Linear Classifier

• Which hyperplane is the best…?

• For generalization purposes, a large margin is preferred
• Good generalization
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Linear Classifier

• Which hyperplane is the best…?

• For generalization purposes, a large margin is preferred
• Good generalization
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Bad generalization



Support Vector Machines (SVMs)

• Maximize margin - the distance to the closest sample
– Leads to an optimization problem

• Examples closest to the hyperplane are support vectors
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Support Vector Machines

• The primal optimization problem for linear SVM (Hard-margin SVMs) 

• Decision rules in testing

• Why?
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Support Vector Machines – some preliminaries

• Hyperplane (in the high-dimensional space) defined by a linear 
model

• Distance between a point to a hyperplane
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Support Vector Machines – some preliminaries

• Hyperplane (in the high-dimensional space) defined by a linear 
model

• Distance between a point to a hyperplane
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Support Vector Machines

• SVM objective 
– maximize the distance from hyperplane to the closest examples 
– positive class and negative class samples are on each side of the hyperplane 

• This problem can be equivalently reformulated as:
– The “standard” formulation of (hard-margin) linear SVM 
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The distance between the hyperplane and the closest examples

For correct classification



Support Vector Machines

• Hard-margin linear SVM
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• Quadratic programming optimization problem subject to linear constraints
• Convex optimization problem
• With a dual form from Lagrangian method 

• hard margin SVM which does not allow any misclassification of samples



Soft Margin Support Vector Machines
• In hard margin SVM, we assume classes are linearly separable, but what if 

separability assumptions doesn’t hold?

• Introduce “slack” variables 𝜉𝜉𝑖𝑖 to allow misclassification of instances
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𝜉𝜉𝑖𝑖 is the distance of 𝑥𝑥𝑖𝑖 to the 
corresponding class margin 
if on the wrong side of the 

margin, or 0 otherwise



Soft Margin Support Vector Machines
When classes were linearly separable, we had:

𝑦𝑦𝑖𝑖 𝑊𝑊𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 ≥ 1

But if we get some data that violate this slack value:

𝑦𝑦𝑖𝑖 𝑊𝑊𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 and 𝜉𝜉𝑖𝑖 ≥ 0

So, the total violation for all data is ∑𝑖𝑖 𝜉𝜉𝑖𝑖

This is a measure of violation of the margin and now we optimize for:
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Hard-margin SVM



Soft Margin Support Vector Machines

• Soft margin SVMs are better able to handle noisy data

• Small 𝐶𝐶: more tolerance on miss-classified samples for larger margin

• Large 𝐶𝐶: focus on avoiding mistakes at the expense of smaller margin

• 𝐶𝐶 to infinity means going back to the hard margin SVM

• Still a quadratic programming optimization problem
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Nonlinear Support Vector Machines
• To generate nonlinear decision boundaries, we can map the features into a new 

feature space where classes are linearly separable and then apply the SVM there

• Feature mapping into a higher dimensional space can be done using a kernel 
function which reduces the complexity of the optimization problem 
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https://medium.com/analytics-vidhya/how-to-classify-non-linear-data-to-linear-data-bb2df1a6b781

https://medium.com/analytics-vidhya/how-to-classify-non-linear-data-to-linear-data-bb2df1a6b781


Support Vector Machines
• Pros
 Very effective in high dimensional feature spaces
 Effective when the number of features is larger than the training data size
 Among the best algorithms when the classes are (well) separable
 Work very well when the data is sparse
 Can be extended to nonlinear classification via kernel trick

• Cons
× For larger datasets it takes more time to process
× Does not perform well for overlapping classes
× Hyperparameter tuning needed for sufficient generalization
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Multiclass Classification
• If there are more than two classes, we must build a multiclass classifier

• Some methods may be directly used for multiclass classification:
– K-nearest neighbours
– Decision trees
– Bayesian techniques

• For those that cannot be directly applied to multiclass problems, we can transform 
them to binary classification by building multiple binary classifiers

• Two possible techniques for multiclass classification with binary classifiers:
– One versus rest: builds one classifier for one class versus the rest and assigns a test sample to the 

class that has the highest confidence score
– One versus one: builds one classifier for every pair of classes and assigns a test sample to the 

class that has the highest number of predictions
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Multiclass Classification
• Two possible techniques for multiclass classification with binary classifiers:

– One versus rest: builds one classifier for one class versus the rest and assigns a test sample 
to the class that has the highest confidence score

– One versus one: builds one classifier for every pair of classes and assigns a test sample to the 
class that has the highest number of predictions
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Evaluation of Classification Error
• Error rate

– Measures how well/poor the system solves the problem it was designed for

• Reject class
– Generic class for objects that cannot be placed in any of the known classes

• Classification error
– The classifier makes a classification error whenever it classifies an input object as

class 𝐶𝐶𝑖𝑖 when the true class is 𝐶𝐶𝑗𝑗, 𝑖𝑖 ≠ 𝑗𝑗, and 𝐶𝐶𝑖𝑖 ≠ 𝐶𝐶𝑟𝑟 (the reject class)

• Performance
– Performance determined by both errors and rejections made
– Classifying all inputs into reject class means system makes no errors but is useless!
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Evaluation of Classification Error
• Empirical error rate

– Number of errors on independent test data divided by number of classifications attempted

• Empirical reject rate
– Number of rejects on independent test data divided by number of classifications attempted

• Independent test data
– Sample objects with true class (labels) known, including objects from the reject class, and 

that were not used in designing the feature extraction and classification algorithms

• Samples used for training and testing should be representative
– Available data is split for example in 80% training and 20% test data
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False Alarms and False Dismissals 
• For two-class classification problems, the two possible types of errors 

have a special meaning and are not symmetric

• For example, in medical diagnosis:
– If the person does NOT have the disease, but the system incorrectly says they do, 

then the error is a false alarm or false positive (also called type I error)

– If the person DOES have the disease, but the system incorrectly says they do NOT, 
then the error is a false dismissal or false negative (also called type II error)

• Consequences and costs of the two errors can be very different
– There are bad consequences to both, but false negatives are generally more 

catastrophic

– So, the aim is to minimize false negatives, possibly at the cost of increasing false 
positives

– The optimal/acceptable balance of the two errors depends on the application
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Receiver Operating Curve (ROC)
• Binary classification;
• For each sample, probability of classifying as 

positive class, p1;
• Conducting classification with threshold on p1;
• Given different threshold, we can get different 

results.
– different false positive and true negative rate 

on the whole dataset
• By applying different threshold, we can get ROC.

• The Receiver Operator Curve (ROC) relates the 
false positive to the true positive.

• Plots the correct true positive versus the false 
positive (false alarm) rate 
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Truth Classification Error?

Cancer Cancer Correct detection (no error)
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Receiver Operating Curve (ROC)
• Generally, false alarms go up with attempts to 

correctly detect higher percentages of known 
objects

• Area Under the ROC (AUC or AUROC) 
summarizes overall performance

• How to evaluate the quality of a classifier 
based on ROC?
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Receiver Operating Curve (ROC)
• Generally, false alarms go up with attempts to 

correctly detect higher percentages of known 
objects

• Area Under the ROC (AUC or AUROC) 
summarizes overall performance
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https://en.wikipedia.org/wiki/Receiver_operating_characteristic



Confusion Matrix

• Matrix whose entry (i, j) records the 
number of times an object of class i 
was classified as class j

• Often used to report the results of 
classification experiments

• Diagonal entries indicate successes
• High off-diagonal numbers indicate 

confusion between classes
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Handwritten digits recognition



Binary Confusion Matrix

• Confusion matrix for binary classification

• Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN
Correct

Total
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Prediction

P N

Actual
P # True Positives (TP) # False Negatives (FN)

N # False Positives (FP) # True Negatives (TN)



Precision versus Recall 

• Precision / correctness
Fraction of relevant elements among the selected elements

• Recall / sensitivity / completeness
Fraction of selected elements among the relevant elements

• F1 score
Harmonic mean of precision and recall:
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Precision =
TP

TP + FP
(P)

Recall =
TP

TP + FN
(R)

https://en.wikipedia.org/wiki/Precision_and_recall

F1 =
2PR

P + R

https://en.wikipedia.org/wiki/Precision_and_recall


More Terminology and Metrics 
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Table of metrics computed 
from the confusion matrix and 
often used in classification

https://en.wikipedia.org/wiki/Confusion_matrix

https://en.wikipedia.org/wiki/Confusion_matrix


• Suppose we have a training set of 𝑁𝑁 observations:

• Training process is to learn 𝑓𝑓(𝑥𝑥) from the training data such that:

• But here the output variable has
a continuous value

𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑥𝑥𝑖𝑖∈ ℝ𝑑𝑑 , 𝑦𝑦𝑖𝑖∈ ℝ, 𝑖𝑖 = 1, … ,𝑁𝑁

Regression
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𝑦𝑦𝑖𝑖 = 𝑓𝑓 𝑥𝑥𝑖𝑖

𝑥𝑥

𝑦𝑦

Example for 𝑑𝑑 = 1



Linear Regression

• Linear regression assumes there is a linear relationship between the 
output and the features:
𝑓𝑓 𝑥𝑥 = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + ⋯+ 𝑤𝑤𝑑𝑑𝑥𝑥𝑑𝑑
𝑥𝑥 = [1, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑] (features)

𝑊𝑊 = [𝑤𝑤0,𝑤𝑤1, … ,𝑤𝑤𝑑𝑑]𝑇𝑇    (weights)

 𝑓𝑓 𝑥𝑥 = 𝑥𝑥𝑊𝑊

• How to find the best line?
The most basic estimation approach is least squares fitting
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𝑥𝑥

𝑦𝑦



Least Squares Regression
• The idea is to minimize the residual sum of squares (sum of the squared 

error)
RSS 𝑊𝑊 = ∑𝑖𝑖=1𝑁𝑁 𝑦𝑦𝑖𝑖 − 𝑓𝑓 𝑥𝑥𝑖𝑖 2 = (𝑌𝑌 − 𝑋𝑋𝑋𝑋)𝑇𝑇 𝑌𝑌 − 𝑋𝑋𝑋𝑋

𝑌𝑌 = 𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑁𝑁 𝑇𝑇 (all sample values)

𝑋𝑋 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 𝑇𝑇 (all sample features)

• How to find the best fit?
�𝑊𝑊 = arg min𝑊𝑊RSS 𝑊𝑊

• RSS is a quadratic function that
can be differentiated with
respect to 𝑊𝑊
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𝑥𝑥

𝑦𝑦



Least Squares Regression
• Differentiation of RSS with respect to 𝑊𝑊 yields:

𝜕𝜕RSS
𝜕𝜕𝑊𝑊 = −2𝑋𝑋𝑇𝑇(𝑌𝑌 − 𝑋𝑋𝑋𝑋)

𝜕𝜕2RSS
𝜕𝜕𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇 = 2𝑋𝑋𝑇𝑇𝑋𝑋

• If we assume that 𝑋𝑋 has full rank, then 𝑋𝑋𝑇𝑇𝑋𝑋 is positive and that means we 
have a convex function which has a minimum, so:

𝜕𝜕RSS
𝜕𝜕𝜕𝜕

= 0 ⇒ 𝑋𝑋𝑇𝑇 𝑌𝑌 − 𝑋𝑋𝑋𝑋 = 0

�𝑊𝑊 = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑌𝑌
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Linear Regression: Example

• Assume we have the length and width of 
some fish and we want to estimate their 
weights from this information (features)

• Start with one feature (say 𝑥𝑥1) which is 
easier for visualization

𝑦𝑦 = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1

𝑋𝑋 =

1 100
1 102

⋮
1 97

,   𝑊𝑊 =
𝑤𝑤0
𝑤𝑤1 ,   𝑌𝑌 =

5
4.5
⋮

4.3
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Length 
(𝒙𝒙𝟏𝟏)

Width 
(𝒙𝒙𝟐𝟐)

Weight 
(𝒚𝒚)

100 40 5

102 35 4.5

92 33 4

83 29 3.9

87 36 3.5

95 30 3.6

87 37 3.4

104 38 4.8

101 34 4.6

97 39 4.3



Linear Regression: Example
• For one feature we obtain:

𝑊𝑊 = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑌𝑌 = −1.8
0.0635

RSS 𝑊𝑊 = ∑𝑖𝑖=1𝑁𝑁 𝑦𝑦𝑖𝑖 − 𝑓𝑓 𝑥𝑥𝑖𝑖 2 = (𝑌𝑌 − 𝑋𝑋𝑋𝑋)𝑇𝑇 𝑌𝑌 − 𝑋𝑋𝑋𝑋 = 0.9438

• For two features we repeat the same procedure with updated 𝑋𝑋:

𝑋𝑋 =

1 100 40
1 102 35

⋮
1 97 39

𝑊𝑊 =
−2.125
0.0591
0.0194

RSS 𝑊𝑊 = 0.9077
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Regression Evaluation Metrics
• Root Mean Square Error (RMSE)

Represents the standard deviation of the predicted values from the observed values

RMSE =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

(𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖)2

• Mean Absolute Error (MAE)
Represents the average of the absolute differences between the predicted and observed values

MAE =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

|𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 |

RMSE penalizes big differences between predicted values and observed values more heavily
Smaller values of RMSE and MAE are more desirable
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Regression Evaluation Metrics
• R-Squared (𝑹𝑹𝟐𝟐)

Indicates how well the selected feature(s) explain the output variable

𝑅𝑅2 = 1 −
∑𝑖𝑖=1𝑁𝑁 (𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖)2

∑𝑖𝑖=1𝑁𝑁 (𝑦𝑦𝑖𝑖 − �𝑦𝑦)2

R-squared tends to always increase by adding extra features

• Adjusted R-Squared (Adjusted 𝑹𝑹𝟐𝟐)
Indicates how well the selected feature(s) explain the output, adjusted for the number of features:

𝑅𝑅adj2 = 1 −
(1 − 𝑅𝑅2)(𝑁𝑁 − 1)

𝑁𝑁 − 𝑑𝑑 − 1
where 𝑁𝑁 is the number of samples and 𝑑𝑑 is the number of features

Larger values of R-Squared and Adjusted R-Squared are more desirable
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Normalization on features -- preprocessing

• Goal: to change the scale of numeric values to a common scale
• Commonly applied techniques:

– Z-score: re-scales the data (features) such that it will have a standard normal 
distribution (𝜇𝜇 = 0, 𝜎𝜎 = 1), which works well for normally distributed data:

𝑥𝑥 − 𝜇𝜇
𝜎𝜎

– Min-max normalization: re-scales the range of the data to [0,1] such that the 
minimum value is mapped to 0 and the maximum value to 1:

𝑥𝑥 − 𝑥𝑥min
𝑥𝑥max − 𝑥𝑥min
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Cross Validation
• Ideally a trained model should work well also on new (unseen) data
• This means the model should neither underfit nor overfit the training data
• Can be used for hyperparameter tuning
• Cross validation (CV) is a technique to assess model performance across all data

– Train-test split: The available data is randomly split into a training set and a test set (usually 
80:20 ratio) for, respectively, training and testing the model

– K-fold cross validation: The data is split into K subsets (folds) and at each iteration we keep 
one fold out for testing and use the rest for training

This is repeated K times until all folds have been
used once as the test set

The performance of the model will be the average
of the performance on the K test sets

Copyright (C) UNSW COMP9517 23T2W5 Pattern Recognition Part 2 41



Cross Validation
• Cross validation can be used for 

hyperparameter tuning (or model 
selection)
– Leave a test set
– Do cross validation on the rest of 

data with training set and validation 
set

– Test set cannot be used for selecting 
the hyperparameter
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Source: 
https://erdogant.github.io/hgboost/pages/html/Cross%20validation%20and%20hyperparameter%20tuning.html#:~:text=Cross%20valida
tion%20and%20hyperparameter%20tuning%20are%20two%20tasks%20that%20we,crossvalidation%20to%20evalute%20our%20results.
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