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Outline

• What and why of feature representation

• How of feature representation
– Different feature extractors/descriptors 

• Classical approaches
• Representation learning

– Application cases in various computer vision 
applications
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sea bass and salmon Classification?

Why and What of Feature 
Representation
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Feature representation for a cat detector?
-- not always easy



Image Features

• Image features are essentially vectors that are a compact 
representation of images

• They represent important information shown in an image
• Intuitive examples of image features:

– Colour/brightness
– Edges 
– Corners 
– Lines
– Shape
– Texture
– etc…
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Image Features

• We need to represent images as feature vectors for further 
processing in a more efficient and robust way
– Pixel values -> more informative representations

• Examples of further processing include:
– Object detection
– Image segmentation
– Image classification
– Content-based image retrieval
– Image stitching 
– Object tracking
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Image Classification
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Object Detection
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Segmentation
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Content-Based Image Retrieval
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Image Stitching
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Object Tracking
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https://heartbeat.fritz.ai/

https://heartbeat.fritz.ai/the-5-computer-vision-techniques-that-will-change-how-you-see-the-world-1ee19334354b


Properties of Features
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• Why not just use pixels values directly?
– Pixel values change with light intensity, colour and direction
– They also change with camera orientation
– And they are highly redundant

• Repeatability (robustness)
– Should be detectable at the same locations in different images 

despite changes in illumination and viewpoint

• Saliency (descriptiveness) 
– Each feature should have a distinctive and matchable description

• Compactness (efficiency)
– Fewer features 
– Smaller features

May be irrelevant 
to tasks



General Framework
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Image Pre-processing

Feature 
Representation

Pattern Recognition

Object detection
Image segmentation
Image classification
Image retrieval
Image stitching
Object tracking
…

Post-processing/down-
stream tasks

Deep Learning

Learning based 
feature representation

Classical approaches

Classical feature 
representations



How of Feature Representation
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• Colour features (based on pixel value)
– Colour histogram
– Colour moments

• Feature Descriptors (based on pixel gradients/textures)
– Haralick texture features
– Local binary patterns (LBP)
– Scale-invariant feature transform (SIFT)
– Bag-of-words (BoW)
– Histogram of oriented gradients (HOG)
– Shape descriptors

• Learning based feature representation
– Unsupervised representation learning
– Supervised representation learning



Colour Features

• Colour is the simplest feature to compute, and is invariant to 
image scaling, translation and rotation

• Color-sensitive tasks
• Example: colour-based image retrieval
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Colour Histogram

• Represent the global distribution of pixel colours in an image 
– Step 1: Construct a histogram for each colour channel (R, G, B)
– Step 2: Concatenate the histograms (vectors) of all channels as the 

final feature vector
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Histogram of R channel

Histogram of G channel

Histogram of B channel



Colour Moments

• Another way of representing colour distributions
– Based on statistical moments (summarization of a whole image)

– First-order moment

– Second-order moment

– Third-order moment

• Moments based representation of colour distributions
– Gives a feature vector of only 9 elements (for RGB images)
– Lower representation capability than the colour histogram
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Application Example

• Colour-based image retrieval
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Pixel Gradient-based Features
• Feature descriptor relying on local patterns at “textural” level. 
• Local appearance reflected in pixel gradients
• Texture is a powerful discriminating feature for identifying visual 

patterns with properties of homogeneity that cannot result from 
the presence of only a single color or intensity

• Many successful classical feature descriptors
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https://arxiv.org/abs/1801.10324

https://arxiv.org/abs/1801.10324


Haralick Features

• Haralick features give an array of statistical descriptors of 
image patterns to capture the spatial relationship between 
neighbouring pixels, that is, textures.
– Step 1: Construct the gray-level co-occurrence matrix (GLCM)
– Step 2: Compute the Haralick feature descriptors from the GLCM

• Representing the feel, appearance, or consistency of a 
surface, such as distinguishing rough and smooth surfaces.
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https://doi.org/10.1109/TSMC.1973.4309314

https://doi.org/10.1109/TSMC.1973.4309314


Local Binary Patterns

• Describe the spatial structure of local image texture
– Divide the image into cells of N x N pixels (e.g. N = 16 or 32)
– Compare each pixel in a cell to each of its 8 neighbouring pixels:

If the centre pixel’s value is greater than the neighbour’s value,
write “0”, otherwise write “1”

– This gives an 8-digit binary pattern per pixel after comparing with all 
8 neighbouring pixels, representing a value in the range 0…255
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0 0 1 1
0 0 1 1
0 2 2 2
2 2 3 3

1 1 1 1 0 0 0 0 



Local Binary Patterns

• Describe the spatial structure of local image texture (cont.)
– Generate the histogram for all pixels in the cell, computing the 

frequency of each 8-digit binary number occurring in the cell
– This gives a 256-bin histogram (the LBP feature vector)
– Combine the histograms of all cells to obtain the image-level

LBP feature descriptor

25

A histogram of 
256 elements

Ref: https://pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-opencv/
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Local Binary Patterns

• LBP can be multi-resolution and rotation-invariant
– Multi-resolution: varying the distance between the centre pixel and 

neighbouring pixels, and the number of neighbouring pixels
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T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” 
IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7):971-987, 2002. https://doi.org/10.1109/TPAMI.2002.1017623

https://doi.org/10.1109/TPAMI.2002.1017623


Local Binary Patterns

• LBP can be multi-resolution and rotation-invariant
– Rotation-invariant: varying the way of constructing the 8-digit binary 

number, e.g. performing bitwise shift to derive the smallest number

Example:

Note: not all patterns have 8 shifted variants (e.g. 11001100 has only 4)
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1 1 1 1 0 0 0 0  =  240
1 1 1 0 0 0 0 1  =  225
1 1 0 0 0 0 1 1  =  195
1 0 0 0 0 1 1 1  =  135
0 0 0 0 1 1 1 1  =    15
0 0 0 1 1 1 1 0  =    30
0 0 1 1 1 1 0 0  =    60
0 1 1 1 1 0 0 0  =  120

15



Local Binary Patterns

• LBP can be multi-resolution and rotation-invariant
– Rotation-invariant: varying the way of constructing the 8-digit binary 

number, e.g. performing bitwise shift to derive the smallest number
=> this reduces the LBP feature dimension from 256 to 36
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T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” 
IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7):971-987, 2002. https://doi.org/10.1109/TPAMI.2002.1017623

https://doi.org/10.1109/TPAMI.2002.1017623


Application Example

• Texture classification
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Scale-Invariant Feature Transform

• SIFT feature describes the texture features in a localised 
region around a key points

• SIFT descriptor is invariant to uniform scaling, orientation, and 
partially invariant to affine distortion and illumination changes
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Scale-Space Extrema Detection

Keypoint Localization

Orientation Assignment

Keypoint Descriptor

Find maxima/minima in DoG images 
across scales

Discarding low-contrast keypoints
Eliminating edge responses

Achieve rotation invariance

Compute gradient orientation histograms



SIFT Extrema Detection

• Difference of Gaussian (DoG) features at multiple scales
• Detect maxima and minima in the scale space of the image
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σ

Gaussian
scale

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2):91-110, 
November 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94

σ

(Fixed factor 𝑘𝑘 between adjacent scales)

http://weitz.de/sift/

https://doi.org/10.1023/B:VISI.0000029664.99615.94


SIFT Keypoint Localization

• Improve and reduce the set of found keypoints
– Use 3D quadratic fitting in scale-space to get subpixel optima

• Taylor expansion of the scale-space function up to quadratic term

– Reject low-contrast and edge points using Hessian analysis
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Initial keypoints from 
scale-space optima

Keypoints after rejecting 
low-contrast points

Final keypoints after 
rejecting edge points



SIFT Orientation Assignment

• Estimate keypoint orientation using local gradient vectors
– For each keypoint, make an orientation histogram of local gradient 

vectors (pixels)
– Find the dominant orientation from the main peak of the histogram
– Create additional keypoint for second highest peak if >80%
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SIFT Keypoint Descriptor
• Divide the 16x16 neighbor areas into 4x4 subareas (4x4 subwindow)
• Bin gradients within subwindow, get histogram 

• 8 bins in gradient orientation histogram 

• Rotating coordinates following orientation of keypoint -> orientation independence 
• Some clamping and normalization operations -> illumination change robustness

• Total 8 x 4 x 4 array = 128 dimensions
• Each keypoint represented by a 128D feature vector
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Application Example

• Image matching
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Application Example

• Image matching
– Compute SIFT keypoints for each image
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Application Example

• Image matching
– Find best match between SIFT keypoints in 128D feature space
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Application Example

• Image stitching
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Application Example

• Image stitching
– Find SIFT keypoints and feature correspondences 
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Application Example

• Image stitching
– Find the right spatial transformation
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Transformations
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translation

rotation

scale

affine

perspective

original



Transformations
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Fitting and Alignment

• Least-squares (LS) fitting of corresponding keypoints

where     are the parameters of the transformation in 

Example for affine transformation:
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Fitting and Alignment
• Solving for the transformation, replying on the correspondence in the 

overlapping area
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Fitting and Alignment

• Matching results are not always perfect
– Containing outliers
– But most (with a rate) of the matching relationship is correct

• RANdom SAmple Consensus (RANSAC) fitting
– Least-squares fitting is hampered by outliers
– Some kind of outlier detection and rejection is needed
– Better use a subset of the data and check inlier agreement
– RANSAC does this in a iterative way to find the optimum
– Critical in 3D vision
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outlier



Fitting and Alignment

• RANSAC
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Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

(line fitting example)



Fitting and Alignment

• RANSAC
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Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

(line fitting example)



Fitting and Alignment

• RANSAC
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Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

(line fitting example)



Fitting and Alignment

• RANSAC
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Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

δ

(line fitting example)



Fitting and Alignment

• RANSAC
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Algorithm:
1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples 
3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

δ

(line fitting example)



Stereo Matching with RANSAC
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Feature for Classification

• SIFT-based texture classification – how to do this?
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bread cracker

Problem: the 
number of SIFT 

keypoints (and thus 
the number of SIFT 
feature descriptors) 

may vary highly 
between images



Feature Encoding

• Global encoding of local SIFT features
– Integrate the local features (SIFT keypoint descriptors) of an image 

into a global vector to represent the whole image
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Feature Encoding

• Most popular method: Bag-of-Words (BoW)
– The variable number of local image features are encoded into a 

fixed-dimensional histogram to represent each image
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http://cs.brown.edu/courses/cs143/2011/results/proj3/hangsu/

Joint set of vocabularies

http://cs.brown.edu/courses/cs143/2011/results/proj3/hangsu/


Feature Encoding

• Bag-of-Words (BoW) – step 1
– Create the vocabulary from the set of local descriptors (SIFT 

keypoint descriptors) extracted from the training data
– This vocabulary represents the categories of local descriptors
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Feature Encoding

• Bag-of-Words (BoW) – step 1
– Extracting local feature descriptors
– Clustering

• k-means clustering is one of the simplest and most popular unsupervised learning 
approaches that perform automatic clustering (partitioning) of the training data 
into multiple categories
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Feature Encoding

• Bag-of-Words (BoW) – step 1
– K-means clustering:

o Initialize: k cluster centres, typically randomly
o Iterate: 1) Assign data (feature vectors) to the closest cluster (Euclidean distance)

 2) Update cluster centres as the mean of the data samples in each cluster
o Terminate: When converged or the number of iterations reaches the maximum
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Feature Encoding

• Bag-of-Words (BoW) – step 2
– The cluster centres are the “visual words” which form the “vocabulary” 

that is used to represent an image
– An individual local feature descriptor (e.g. SIFT keypoint descriptor) is 

assigned to one visual word with the smallest distance
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Feature Encoding

• Bag-of-Words (BoW) – step 2
– For an image, the number of local feature descriptors assigned to 

each visual word is computed
– The numbers are concatenated into a vector which forms the 

BoW representation of the image
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Feature Encoding
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Image from Cordelia Schmit

Copyright (C) UNSW

• Example feature vectors of texture images



Application Example

• SIFT-based texture classification
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bread

Classification 
model

1. SIFT feature extraction 2. BoW encoding 3. Classification

Vocabulary



Application Example

• SIFT-based
classification
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http://heraqi.blogspot.com/2017/03/BoW.html

Build vocabulary

Train classifier

Classify image

http://heraqi.blogspot.com/2017/03/BoW.html


Feature Encoding

• Local features can be other types of features, not just SIFT
– LBP, SURF, BRIEF, ORB

• There are also more advanced techniques than BoW
– VLAD, Fisher Vector

• A very good source of additional information is VLFeat.org
– http://www.vlfeat.org/
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http://www.vlfeat.org/


Histogram of Oriented Gradients

• HOG describes the distributions of gradient orientations in 
localized areas and does not require initial segmentation
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N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Computer Vision and Pattern 
Recognition 2005. https://doi.org/10.1109/CVPR.2005.177

⇒

https://doi.org/10.1109/CVPR.2005.177


Histogram of Oriented Gradients

• HoG feature for image description
– Compute gradients
– Bin gradients
– Aggregate blocks (4x4, 16x16 cells)
– Normalize gradient magnitudes

• Not reliant on magnitude, just direction
– Invariant to some lighting changes

• Dense on images
• Object detection
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Histogram of Oriented Gradients

• Step 1: Calculate gradient magnitude and orientation at each 
pixel with a gradient operator  =>  gradient vector

• Step 2: Divide orientations into N bins and assign the gradient 
magnitude of each pixel to the bin corresponding to its 
orientation  =>  cell histogram
– For example 9 bins evenly divided from 0 to 180 degrees
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https://medium.com/@dnemutlu/hog-feature-descriptor-263313c3b40d



Histogram of Oriented Gradients

• Step 3: Concatenate and block-normalise cell histograms to 
generate detection-window level HOG descriptor
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# features = (7 x 15) x 9 x 4 = 3780 

# blocks

# orientations/cell

# cells/block



Histogram of Oriented Gradients

• Detection via sliding window on the image
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Histogram of Oriented Gradients

• Detection via sliding window on the image
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HOG feature map Detector response map

A response map could be computed for example as follows:
o Compute the HOG descriptor for many example windows from a training dataset
o Manually label each example window as “person” or “background”
o Train a classifier (such as a SVM) from these example windows and labels
o For each new (test) image, predict the label of each window using this classifier



Application Example

• Human detection

Copyright (C) UNSW COMP9517 23T2W3 Feature Representation 71

https://www.pyimagesearch.com/2015/11/09/pedestrian-detection-opencv/

https://www.pyimagesearch.com/2015/11/09/pedestrian-detection-opencv/


Shape Features

• Shape is an essential feature of material objects that can be 
used to identify and classify them

• Example: object recognition
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Basic Shape Features

• Simple geometrical shape descriptors
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Compactness:

Ratio of the area of an 
object to the area of a 
circle with the same 

perimeter

Circularity:

Ratio of 4𝜋𝜋 times the 
area of an object to the 

second power of its 
perimeter (4𝜋𝜋𝐴𝐴/𝑃𝑃2
equals 1 for a circle)



Basic Shape Features

• Simple geometrical shape descriptors

Copyright (C) UNSW COMP9517 23T2W3 Feature Representation 74

Elongation:

Ratio between the 
length and width 

of the object’s 
bounding box

Eccentricity:

Ratio of the length 
of the minor axis 
to the length of 
the major axis



Boundary Descriptors

• Chain code descriptor
– The shape of a region can be represented by labelling the relative 

position of consecutive points on its boundary
– A chain code consists of a list of directions from a starting point and 

provides a compact boundary representation
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Example:

2,1,0,7,7,0,1,1



Shape Context

• Shape context is a point-wise local feature descriptor
– Pick n points on the contour of a shape
– For each point pi construct a histogram hi of the relative coordinates 

of the other n − 1 points  =>  this is the shape context of pi
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(d) (e)(f)

S. Belongie, J. Malik, J. Puzicha (2002), “Shape matching and object recognition using shape contexts,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence 24(4):509-522. https://doi.org/10.1109/34.993558

https://doi.org/10.1109/34.993558


Learning Representations

• Handcrafted features
– LBP, SIFT, HoG, BoW ….
– Used for very long time
– Worked well for many applications

• Can the feature engineering process be automatic?
– Finding discriminative signatures automatically and 

systematically

• Learning for reorientations
– a brief overview
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Learning Representations

• Supervised learning for representations
– With some specific task

• Unsupervised learning for representations
– Learning with some protext tasks

• Image reconstruction
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Hinton et al. 2006.



Unsupervised Representation Learning

• Representation learning still needs a loss 
function to provide supervision signal
– Reconstructing the input image

• L2 / L1 / GAN loss
• Learning representations that can reconstruct the image

• Different models/methods
– Sparse coding
– (Deep) autoencoders
– Generative Adversarial Network based feature 

learning
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Sparse Coding

• Learning to obtain a dictionary for representing each 
image/patch with a sparse vector

• The sparse vector can be used as descriptors for 
downstream tasks, such as classification
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Lee et al. 2006.
Salakhutdinov. 2016.



Autoencoder

• (Deep) neural network trained with the task 
for reconstructing images
– encoder, decoder
– Extracted features (from encoder) can be used for 

downstream tasks
– Can be very large-scale & powerful
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Supervised Representation Learning

• Deep neural networks
– End-to-end model

• Image – features – output of the task

– will be discussed more in week 7
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Neural Net



Summary

• What and why of feature representation
– Feature representation is essential in solving almost all types of 

computer vision problems

• How of feature representation
– Different feature extractors/descriptors 

• Classical approaches
– Color features
– Haralick texture features, LBP, SIFT, BoW, HoG, Shape descriptors

• Representation learning
– Unsupervised/supervised representation learning

– Application cases in various computer vision applications
• Classification
• RANSAC for stereo matching (robust fitting)
• Detection
• …
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