COMP9517

Computer Vision

2023 Term 2 Week 1

Professor Erik Meijering

Image Formation

What is image formation?

Image formation occurs when a **sensor registers radiation** that has **interacted with physical objects**

Geometry of image formation

Mapping world coordinates (3D) to image coordinates (2D)

- Pinhole camera model
- Projective geometry
- **Projection matrix**

Idea 1: Put a piece of film in front of an object

Do we get a reasonable image?

Idea 1: Put a piece of film in front of an object

Do we get a reasonable image?

Idea 1: Put a piece of film in front of an object

Do we get a reasonable image?

Idea 1: Put a piece of film in front of an object

The resulting image is completely blurred

All object points are projected to all points on the film

Idea 2: Add a barrier to block off most of the rays

Pinhole camera model

Dimensionality reduction machine

3D world 2D image

Projection can be tricky…

Projective geometry

Projective geometry

What is lost? Length and angles are not preserved

Copyright (C) UNSW 13 COMP9517 23T2W1 Image Formation

Projective geometry

What is preserved?

Straight lines are

Parallel lines in the 3D world intersect in the 2D image at a "vanishing point"

Photo from Criminisi

Projection mathematics

From **world coordinates** to **image coordinates**

Projection mathematics

From **world coordinates** to **image coordinates**

If $x = 2$, $y = 3$, $z = 5$, and $f = 2$, what are x' and y' ?

Projection mathematics

From **world coordinates** to **image coordinates**

If $x = 2$, $y = 3$, $z = 5$, and $f = 2$, what are x' and y' ?

Perspective projection

- Apparent size of object depends on its distance: far objects appear smaller
- By similar triangles:

$$
(x', y', z') = (-f\frac{x}{z}, -f\frac{y}{z}, -f)
$$

• Ignore third coordinate and mirror:

$$
(x', y') = (f\frac{x}{z}, f\frac{y}{z})
$$

Affine projection

- Suitable when scene depth is small relative to average distance from camera
- Let magnification $m = f/z_0$ be a positive constant and all points in the scene have approximately constant distance z_0 to the camera
- Leads to weak perspective projection: $(x', y') = (mx, my)$
- Orthographic projection when $m = 1$: $(x', y') = (x, y)$

Beyond pinholes: radial distortions

• Modern cameras use lenses instead of pinholes

No distortion Barrel distortion Pincushion distortion

Image from Martin Habbecke **Barrel distortion corrected**

COMP9517 23T2W1 Image Formation Copyright (C) UNSW 26

Comparing with human vision

- Cameras imitate the frequency response of the human eye so it is good to know something about it
- Computer vision probably would not get as much attention if biological vision (especially human vision) had not proven that it is possible to make important judgements from 2D images
important judgements from 2D images

Electromagnetic spectrum

<https://sites.google.com/site/chempendix/em-spectrum>

Normalized responsivity spectra of human cone cells (S, M, L types)

Colour represented by RGB images

Colour spaces: RGB

Default colour space in vision

Drawback: strongly correlated channels

Intuitive colour space

Drawback: confounded channels

Colour spaces: YCbCr

Fast to compute, good for compression, used by TV

Cr (Y=0.5,Cb=0.5)

Colour spaces: L*a*b*

"Perceptually uniform" colour space

Any numerical change corresponds to similar perceived change in color: Euclidean distances make sense

Digital image formation

Digital image formation

Displaying a digital image

Comparing the original and digital image

Digitisation by spatial sampling

- Digitisation converts an analog image to a digital image by sampling the image space
- Sampling discretises the coordinates x and y
	- Spatial discretisation of a picture function $f(x, y)$
	- Typically a rectangular grid of sampling points is used $x = j\Delta x$, $y = k\Delta y$ for $j = 0 ... M - 1$, $k = 0 ... N - 1$
	- The Δx and Δy are called the sampling intervals

Digital colour images

Each channel is a digital image with the same number of rows and columns

Spatial resolution

- Spatial resolution: number of pixels per unit of length
- Example: resolution decreases by one half each time (see right)
- Human faces can be recognized at 64 x 64 pixels per face
- Appropriate resolution is essential:
	- Too little resolution yields poor recognition
	- Too much resolution is slow and wastes memory

1/2

1/8

Quantisation

- Quantisation digitises the image intensity or amplitude values $f(x, y)$
	- Called intensity or gray-level quantisation
	- Gray-level resolution to be chosen per application
		- For example, 16, 32, 64,, 128, 256 levels
		- Should be high enough for human perception of shading details
		- \cdot The latter requires about 100 levels for a realistic image
		- ❖ Should not be higher than necessary to avoid wasting storage

Quantisation and bits per pixel

Further reading on discussed topics

- Chapter 2 of Szeliski
- Chapter 2 of Shapiro and Stockman

Acknowledgements

- Several slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth
- Some material drawn from referenced and associated online sources
- Image sources credited where possible

