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and its applications



Foundation models
Foundation model refers to any model that is trained on broad data and can be 
adapted to a wide range of downstream tasks [1].

Foundation models in NLP are very popular (e.g., GPT)...with strong zero-shot 
and few-shot generalization.

• Pre-trained on web-scale datasets

• Solving diverse tasks via prompt engineering

2Credit: 

[1] Bommasani, Rishi, et al. "On the opportunities and risks of foundation models." arXiv preprint arXiv:2108.07258 (2021).
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Foundation model for segmentation
Three keys to the success: Task; Model; Data.

3Credit: 

Kirillov, Alexander, et al. "Segment anything." ICCV 2023.
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Promptable segmentation
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A prompt can be:

1. a set of foreground/background points

2. A rough box or mask

3. Free-form text

…. any information to indicate what to segment

This task aims to return a valid segmentation 

mask given any prompt.
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Kirillov, Alexander, et al. "Segment anything." ICCV 2023.



The Overview of SAM
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Sparse prompts
Dense prompt
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Kirillov, Alexander, et al. "Segment anything." ICCV 2023.



Resolving Ambiguity
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“Click” (a point prompt)
Kirillov, Alexander, et al. "Segment anything." ICCV 2023.

Score 1 Score 2 Score 3



Efficient & Flexible Model Design
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Video from https://segment-anything.com/

Image encoder:
• Runs once per image
• A large ViT model
• Runs on a GPU

Prompt encoder & Mask decoder:
• Runs on each input prompt
• A Lightweight model
• Runs on a web-browser



3x1024x1024 256x64x64

Image Encoder
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Masked Auto-encoder
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Kirillov, Alexander, et al. "Segment anything." ICCV 2023.
He, Kaiming, et al. "Masked autoencoders are scalable vision learners." CVPR 2022.
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(Optional) Masked Auto-Encoder (MAE)

He, Kaiming, et al. "Masked autoencoders are scalable vision learners." CVPR 2022.



Dense (Mask) Prompt Encoding
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3x1024x1024
256x64x64

1x512x512

256x64x64

Image + mask embedding

Down-sampling the mask

256x64x64
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Kirillov, Alexander, et al. "Segment anything." ICCV 2023.



Sparse Prompt Encoding
• Encoding points

• A positional encoding (PE) of the point’s location (x, y)
• A learned embedding indicating ”foreground/background” point

• Encoding bounding boxes
• The PE for the “top-left” point + a learned embedding indicating “top-left”
• The PE for the “bottom-right” point + a learned embedding indicating “bottom-right”

• Encoding text prompts
• Text embeddings form the pre-trained CLIP text encoder
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(Optional) CLIP
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Image from https://openai.com/research/clip
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Total prompt encoding
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Mask decoder
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Kirillov, Alexander, et al. "Segment anything." ICCV 2023.



Mask decoder – 3 types of attention
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• Self-attention of the tokens
Update each prompt/out embedding with contextual 
knowledge of other tokens 

• Cross-attention: tokens  image embedding
Update the tokens with image context

• Cross-attention: image embedding  tokens
Update the image embedding with prompt information

Output tokens: 1. mask tokens; 2. IoU token 
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 1 + 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
Here, 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 3 (whole, part, sub-part)
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Kirillov, Alexander, et al. "Segment anything." ICCV 2023.



Mask decoder
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Kirillov, Alexander, et al. "Segment anything." ICCV 2023.



Training losses – Focal Loss
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Focal Loss = − 1 − 𝑝𝑝𝑡𝑡 𝛾𝛾 log(𝑝𝑝𝑡𝑡)

Focal Loss modifies the Cross-Entropy Loss by focusing
learning on hard mis-classified examples and down-weighting
easy samples.
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Lin, Tsung-Yi, et al. "Focal loss for dense object detection.” ICCV 2017.



Training losses – Dice Loss
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Dice Loss = 2×𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)

=
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Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. "V-net: Fully convolutional neural networks for volumetric medical image segmentation." 3DV 2016.



Training Algorithm
An iterative and interactive segmentation setup:

3 stages with different prompts in a total of 11 iterations:

• First iteration: randomly select a point or a box as prompt 

• 2-9 iterations: the predicted mask with the highest predicted IoU and a point 
sampled from the error prediction of that mask

• 10-11 iterations: the predicted mask with the highest predicted IoU
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SAM Training with Data Engine
Stage 1 – Assisted-Manual
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SAM

Manually
revise

Retrain with newly 
annotated labels 

• Train an initial segmentation model on publicly available datasets
• Annotators revise the predicted masks
• Use the newly annotated labels to train the model 

resulting in 120K annotated images with 4.3M masks, ~44 masks per image

Repeating for 6 times
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Images from https://segment-anything.com/



SAM Training with Data Engine
Stage 2 – Semi-Automatic: To improve the diversity of masks 
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SAM

• Train SAM on the collected data 
• Annotators label additional segments SAM missed

resulting in 180K annotated images with 5.9M masks, ~72 masks per image

Label additional 
segments

Repeating for 5 times
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Images from https://segment-anything.com/



SAM Training with Data Engine
Stage 3 – Fully automatic
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SAM

Train SAM on the collected data so far (300 K images with 10.2 M masks)
Predict 3 outputs, i.e., whole, part, and subpart. 

Resulting in the SA-1B dataset consisting of 11M high-resolution images (3300x4950) with 
automatically generated 1.1B masks

Prompt with 32 x 32 grid points
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Images from https://segment-anything.com/



SA-1B Dataset -- Geographic Distribution
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Kirillov, Alexander, et al. "Segment anything." ICCV 2023.



Zero-shot Single Point Valid Mask Evaluation
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Kirillov, Alexander, et al. "Segment anything." ICCV 2023.



Zero-shot edge detection
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Kirillov, Alexander, et al. "Segment anything." ICCV 2023.



Zero-shot Instance Segmentation
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Kirillov, Alexander, et al. "Segment anything." ICCV 2023.



Zero-shot Text-to-Mask
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Kirillov, Alexander, et al. "Segment anything." ICCV 2023.



Grounded-SAM: Grounded DINO + SAM
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Grounded DINO: Detect anything with text prompt
Grounded SAM: Detect and segment anything with text prompt

Grounded 
DINO SAMThe running dog

Horse.
Clouds.
Grasses.
Sky. Hill

Images from https://github.com/IDEA-Research/Grounded-Segment-Anything
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Grounded-SAM + Stable-Diffusion Inpainting
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Generating new data!

Images from https://github.com/IDEA-Research/Grounded-Segment-Anything
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BLIP + Grounded-SAM
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Automatic Labeling

Images from https://github.com/IDEA-Research/Grounded-Segment-Anything
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Grounded-SAM + Whisper
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Detect anything with text prompt with speech

Images from https://github.com/IDEA-Research/Grounded-Segment-Anything
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Conclusion
SAM

• defines a generalized segmentation approach: promptable segmentation

• builds a model that supports flexible prompting and real-time inference

• build a data engine that acquired the largest ever segmentation dataset SA-1B
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Questions?


