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What is image processing?
• Image processing = image in > image out

• Aims to suppress distortions and enhance relevant information

• Used to prepare images for further analysis and interpretation

• Image analysis = image in > features out

• Computer vision = image in > interpretation out
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Types of image processing
• Two main types of image processing operations:

– Spatial domain operations (in image space)
– Transform domain operations (mainly in Fourier space)

• Two main types of spatial domain operations:

– Point operations (intensity transformations on individual pixels)
– Neighbourhood operations (spatial filtering on groups of pixels)
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Topics and learning goals
• Describe the workings of basic point operations

Contrast stretching, thresholding, inversion, log/power transformations

• Understand and use the intensity histogram
Histogram specification, equalization, matching

• Define arithmetic and logical operations
Summation, subtraction, AND/OR, averaging
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Spatial domain operations
• General form of spatial domain operations

𝑔𝑔 𝑥𝑥,𝑦𝑦 = 𝑇𝑇 𝑓𝑓 𝑥𝑥,𝑦𝑦

where

𝑓𝑓 𝑥𝑥,𝑦𝑦 is the input image

𝑔𝑔 𝑥𝑥,𝑦𝑦 is the processed image

𝑇𝑇 � is the operator applied at (𝑥𝑥,𝑦𝑦)

Copyright (C) UNSW 5COMP9517 23T2W1 Image Processing Part 1



Spatial domain operations
• Point operations: 𝑇𝑇 operates on individual pixels

𝑇𝑇:ℝ⟶ ℝ 𝑔𝑔 𝑥𝑥,𝑦𝑦 = 𝑇𝑇 𝑓𝑓 𝑥𝑥,𝑦𝑦

• Neighbourhood operations: 𝑇𝑇 operates on multiple pixels

𝑇𝑇:ℝ2 ⟶ ℝ 𝑔𝑔 𝑥𝑥,𝑦𝑦 = 𝑇𝑇 𝑓𝑓 𝑥𝑥,𝑦𝑦 ,𝑓𝑓 𝑥𝑥 + 1,𝑦𝑦 ,𝑓𝑓 𝑥𝑥 − 1,𝑦𝑦 , …
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Point operations
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Contrast stretching

Copyright (C) UNSW 9

• Produces images of higher contrast

• Puts values below 𝐿𝐿 in the input to the minimum (black) in the output

• Puts values above 𝐻𝐻 in the input to the maximum (white) in the output

• Linearly scales values between 𝐿𝐿 and 𝐻𝐻 (inclusive) in the input to between

the minimum (black) and the maximum (white) in the output
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Intensity thresholding
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Intensity thresholding
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• Limiting case of contrast stretching

• Produces binary images of gray-scale images

• Puts values below the threshold to black in the output

• Puts values equal/above the threshold to white in the output

• Popular method for image segmentation (discussed later)

• Useful only if object and background intensities are very different

• Result depends strongly on the threshold level (user parameter)
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Intensity thresholding
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Intensity thresholding
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Intensity thresholding
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Automatic intensity thresholding
• Otsu’s method for computing the threshold automatically

Exhaustively searches for the threshold minimising the intra-class variance

𝜎𝜎𝑊𝑊2 = 𝑝𝑝0𝜎𝜎02 + 𝑝𝑝1𝜎𝜎12

Equivalent to maximising the inter-class variance (much faster to compute)

𝜎𝜎𝐵𝐵2 = 𝑝𝑝0𝑝𝑝1 𝜇𝜇0 − 𝜇𝜇1 2

Here, 𝑝𝑝0 is the fraction of pixels below the threshold (class 0), 𝑝𝑝1 is the fraction of pixels equal 

to or above the threshold (class 1), 𝜇𝜇0 and 𝜇𝜇1 are the mean intensities of pixels in class 0 and 

class 1, 𝜎𝜎02 and 𝜎𝜎12 are the intensity variances, and 𝑝𝑝0 + 𝑝𝑝1 = 1 and 𝜎𝜎02 + 𝜎𝜎12 = 𝜎𝜎2
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https://doi.org/10.1109/TSMC.1979.4310076
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Otsu thresholding example
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Automatic intensity thresholding
• Isodata method for computing the threshold automatically

1. Select an arbitrary initial threshold 𝑡𝑡

2. Compute 𝜇𝜇0 and 𝜇𝜇1 with respect to the threshold

3. Update the threshold to the mean of the means: 𝑡𝑡 = 𝜇𝜇0 + 𝜇𝜇1 /2

4. If the threshold changed in Step 3, go to Step 2

Upon convergence, the threshold is midway between the two class means
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Isodata thresholding example
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Multilevel thresholding
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Intensity inversion
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Intensity inversion examples

“Assessment of grayscale inverted images in addition to standard images 
facilitates the detection of microcalcification.”
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https://doi.org/10.1186/s12880-017-0196-6
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Log transformation
• Definition of log transformation

𝑠𝑠 = 𝑐𝑐 log 1 + 𝑟𝑟

where 𝑟𝑟 is the input intensity, 𝑠𝑠 is the output
intensity, and 𝑐𝑐 is a constant

– Maps a narrow input range of low gray-level values 
into a wider range of output values, and vice versa for 
higher gray-level values

– Also compresses the dynamic range of images with 
large variations in pixel values (such as Fourier
spectra, to be discussed later)
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Power transformation
• Definition of power transformation

𝑠𝑠 = 𝑐𝑐 𝑟𝑟𝛾𝛾

where 𝑐𝑐 and 𝛾𝛾 are constants

– Similar to log transformation

– Represents a family of transformations by varying 𝛾𝛾

– Many devices respond according to a power law

– Example power transformation: gamma correction

– Useful for general-purpose contrast manipulation
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Power transformation examples
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𝑐𝑐 = 1

Input 𝛾𝛾 = 3 𝛾𝛾 = 5𝛾𝛾 = 4
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Piecewise linear transformations
• Complementary to other transformation methods

• Enable more fine-tuned design of transformations

• Can have very complex shapes

• Requires more user input
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Piecewise contrast stretching
• One of the simplest piecewise linear transformations

• Increases the dynamic range of gray levels in images

• Used in display devices or recording media to span full range
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Gray-level slicing
• Used to highlight a specific range of gray levels

• Two different slicing approaches:

1) High value for all gray levels in a range of interest and 

low value for all others (produces a binary image)

2) Brighten a desired range of gray levels while preserving 

background and other gray-scale tones of the image
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Bit-plane slicing
• Highlights contribution to total image by specific bits

• An image with n bits/pixel has n bit-planes

• Can be useful for image compression
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Histogram of pixel values
• For every possible gray-level value, count the number of pixels having that 

value, and plot the pixel counts as a function of gray level
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• Triangle method for computing the threshold automatically

1. Find the histogram peak (𝑟𝑟𝑝𝑝,ℎ𝑝𝑝) and

the highest gray level point (𝑟𝑟𝑚𝑚,ℎ𝑚𝑚)

2. Construct a straight line 𝑙𝑙(𝑟𝑟) from the

peak to the highest gray level point

3. Find the gray level 𝑟𝑟 for which the

distance 𝑙𝑙 𝑟𝑟 − ℎ(𝑟𝑟) is the largest

Histogram based thresholding
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Comparison of thresholding methods
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Histogram processing
• Histogram equalization

Aim: To get an image with equally distributed intensity levels 
over the full intensity range

• Histogram specification (also called histogram matching)
Aim: To get an image with a specified intensity distribution, 
determined by the shape of the histogram
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Histogram equalization
Enhances contrast for 
intensity values near 
histogram maxima and 
decreases contrast near 
histogram minima
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Histogram bins are much more “equal” here
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Histogram equalization
• Let 𝑟𝑟 ∈ 0, 𝐿𝐿 − 1 represent pixel values (intensities, gray levels)
𝑟𝑟 = 0 represents black and 𝑟𝑟 = 𝐿𝐿 − 1 represents white

• Consider transformations 𝑠𝑠 = 𝑇𝑇 𝑟𝑟 , 0 ≤ 𝑟𝑟 ≤ 𝐿𝐿 − 1, satisfying

1) 𝑇𝑇(𝑟𝑟) is single-valued and monotonically increasing in 0 ≤ 𝑟𝑟 ≤ 𝐿𝐿 − 1
This guarantees that the inverse transformation 𝑇𝑇−1(𝑠𝑠) exists

2) 0 ≤ 𝑇𝑇 𝑟𝑟 ≤ 𝐿𝐿 − 1 for 0 ≤ 𝑟𝑟 ≤ 𝐿𝐿 − 1
This guarantees that the input and output ranges will be the same
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Histogram equalization (continuous case)
Consider 𝑟𝑟 and 𝑠𝑠 as continuous random variables over 0, 𝐿𝐿 − 1 with PDFs 𝑝𝑝𝑟𝑟(𝑟𝑟) and 𝑝𝑝𝑠𝑠(𝑠𝑠)

If 𝑝𝑝𝑟𝑟(𝑟𝑟) and 𝑇𝑇(𝑟𝑟) are known and 𝑇𝑇−1(𝑠𝑠) satisfies monotonicity, then, from probability theory

𝑝𝑝𝑠𝑠 𝑠𝑠 = 𝑝𝑝𝑟𝑟(𝑟𝑟) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Let us choose: 𝑠𝑠 = 𝑇𝑇 𝑟𝑟 = (𝐿𝐿 − 1)∫0
𝑟𝑟 𝑝𝑝𝑟𝑟 ξ 𝑑𝑑ξ

This is the CDF (cumulative distribution function) of 𝑟𝑟 which satisfies conditions (1) and (2)

Now: 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑(𝑟𝑟)
𝑑𝑑𝑑𝑑

= 𝐿𝐿 − 1 𝑑𝑑
𝑑𝑑𝑑𝑑 ∫0

𝑟𝑟 𝑝𝑝𝑟𝑟 ξ 𝑑𝑑ξ = (𝐿𝐿 − 1)𝑝𝑝𝑟𝑟(𝑟𝑟)

Therefore: 𝑝𝑝𝑠𝑠(𝑠𝑠) = 𝑝𝑝𝑟𝑟(𝑟𝑟) 1
𝐿𝐿−1 𝑝𝑝𝑟𝑟 𝑟𝑟

= 1
𝐿𝐿−1

for 0 ≤ 𝑠𝑠 ≤ 𝐿𝐿 − 1 (uniform distribution)
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https://www.cl.cam.ac.uk/teaching/2003/Probability/prob11.pdf
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Histogram equalization (discrete case)
For discrete values we get probabilities and summations instead of PDFs and integrals:

𝑝𝑝𝑟𝑟(𝑟𝑟𝑘𝑘) = 𝑛𝑛𝑘𝑘 /𝑀𝑀𝑀𝑀 for 𝑘𝑘 = 0, 1, … , 𝐿𝐿 − 1

where 𝑀𝑀𝑀𝑀 is total number of pixels in image, 𝑛𝑛𝑘𝑘 is the number of pixels with gray level 𝑟𝑟𝑘𝑘 and 𝐿𝐿 is 
the total number of gray levels in the image

Thus: 𝑠𝑠𝑘𝑘 = 𝑇𝑇 𝑟𝑟𝑘𝑘 = (𝐿𝐿 − 1) ∑𝑗𝑗=0𝑘𝑘 𝑝𝑝𝑟𝑟 𝑟𝑟𝑗𝑗 = 𝐿𝐿−1
𝑀𝑀𝑀𝑀

∑𝑗𝑗=0𝑘𝑘 𝑛𝑛𝑗𝑗 for  𝑘𝑘 = 0, 1, … , 𝐿𝐿 − 1

This transformation is called histogram equalization

However, in practice, getting a perfectly uniform distribution for discrete images is rare
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Constrained histogram equalization
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Histogram matching (continuous case)
Assume that 𝑟𝑟 and 𝑠𝑠 are continuous and 𝑝𝑝𝑧𝑧(𝑧𝑧) is the target distribution for the output image

From our previous analysis we know the following transformation results in a uniform distribution:

𝑠𝑠 = 𝑇𝑇 𝑟𝑟 = (𝐿𝐿 − 1)∫0
𝑟𝑟 𝑝𝑝𝑟𝑟 ξ 𝑑𝑑ξ

Now we can define a function 𝐺𝐺(𝑧𝑧) as:

𝐺𝐺 𝑧𝑧 = 𝐿𝐿 − 1 ∫0
𝑧𝑧 𝑝𝑝𝑧𝑧 ξ 𝑑𝑑ξ = 𝑠𝑠

Therefore:

𝑧𝑧 = 𝐺𝐺−1 𝑠𝑠 = 𝐺𝐺−1 𝑇𝑇(𝑟𝑟)
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Histogram matching (discrete case)
For discrete image values we can write:

𝑠𝑠𝑘𝑘 = 𝑇𝑇 𝑟𝑟𝑘𝑘 = (𝐿𝐿 − 1) ∑𝑗𝑗=0𝑘𝑘 𝑝𝑝𝑟𝑟 𝑟𝑟𝑗𝑗 = 𝐿𝐿−1
𝑀𝑀𝑀𝑀

∑𝑗𝑗=0𝑘𝑘 𝑛𝑛𝑗𝑗

𝑘𝑘 = 0, 1, … , 𝐿𝐿 − 1

And: 𝐺𝐺 𝑧𝑧𝑞𝑞 = (𝐿𝐿 − 1)∑𝑖𝑖=0
𝑞𝑞 𝑝𝑝𝑧𝑧(𝑧𝑧𝑖𝑖)

Therefore: 𝑧𝑧𝑞𝑞 = 𝐺𝐺−1(𝑠𝑠𝑘𝑘)

Copyright (C) UNSW 39COMP9517 23T2W1 Image Processing Part 1



Histogram matching example
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Arithmetic and logical operations
• Defined on a pixel-by-pixel basis between two images
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Arithmetic and logical operations
• Useful arithmetic operations include addition and subtraction
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Arithmetic and logical operations
• Useful logical operations include bitwise AND and OR
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Arithmetic and logical operations
• Useful logical operations include bitwise AND and OR

Copyright (C) UNSW 44

Input Mask Input OR Mask

COMP9517 23T2W1 Image Processing Part 1



Averaging
• Useful for example to reduce noise in images
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Assume the true noise-free image is 𝑔𝑔(𝑥𝑥,𝑦𝑦) and the actual observed images 
are 𝑓𝑓𝑖𝑖 𝑥𝑥,𝑦𝑦 = 𝑔𝑔 𝑥𝑥,𝑦𝑦 + 𝑛𝑛𝑖𝑖(𝑥𝑥,𝑦𝑦) for 𝑖𝑖 = 1, … ,𝑁𝑁, where the 𝑛𝑛𝑖𝑖 are zero-mean, 
independent and identically distributed (i.i.d.) noise images, then we have 
E 𝑓𝑓𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑔𝑔(𝑥𝑥,𝑦𝑦) and VAR 𝑓𝑓𝑖𝑖(𝑥𝑥,𝑦𝑦) = VAR 𝑛𝑛𝑖𝑖(𝑥𝑥, 𝑦𝑦) = 𝜎𝜎2(𝑥𝑥,𝑦𝑦)

→ ̅𝑓𝑓 𝑥𝑥,𝑦𝑦 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑦𝑦) =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑔𝑔 𝑥𝑥,𝑦𝑦 + 𝑛𝑛𝑖𝑖(𝑥𝑥,𝑦𝑦) = 𝑔𝑔 𝑥𝑥,𝑦𝑦 +
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑛𝑛𝑖𝑖(𝑥𝑥,𝑦𝑦)

→ VAR
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑛𝑛𝑖𝑖(𝑥𝑥,𝑦𝑦) =
1
𝑁𝑁2�

𝑖𝑖=1

𝑁𝑁

VAR 𝑛𝑛𝑖𝑖(𝑥𝑥,𝑦𝑦) =
1
𝑁𝑁2 𝑁𝑁𝜎𝜎

2(𝑥𝑥,𝑦𝑦) =
𝜎𝜎2(𝑥𝑥,𝑦𝑦)

𝑁𝑁
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Averaging
• Useful for example to reduce noise in images
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Further reading on discussed topics
• Sections 3.1-3.3 of Szeliski

• Chapter 3 of Gonzalez and Woods 2002
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Acknowledgement
• Some images drawn from the mentioned resources
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