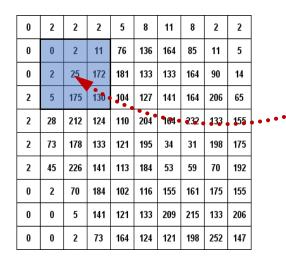
COMP9517

Computer Vision

2023 Term 2 Week 2

Professor Erik Meijering



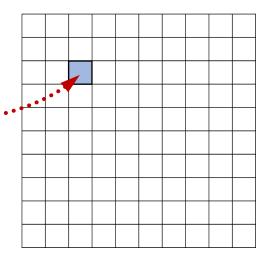


Image Processing

Part 2-1

Types of image processing (recap)

- Two main types of image processing operations:
 - **Spatial domain operations** (in image space)

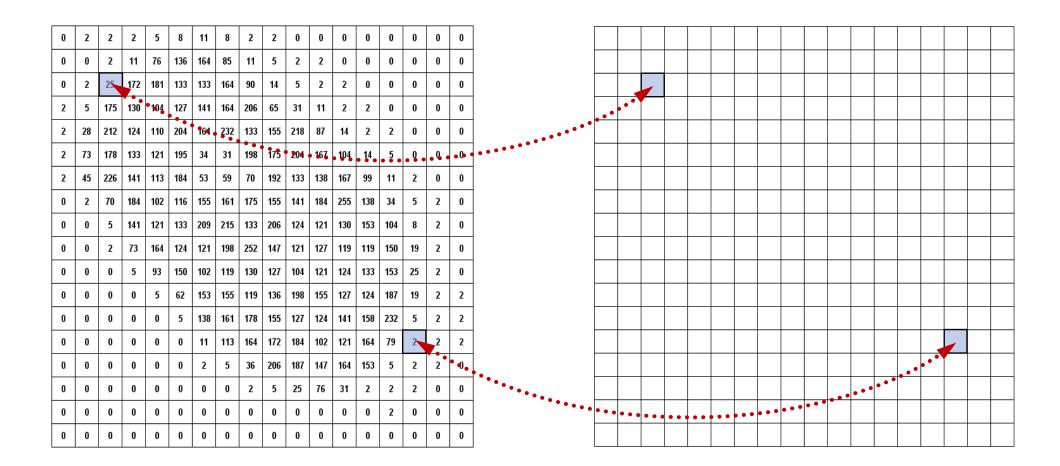
Next time

Transform domain operations (mainly in Fourier space)

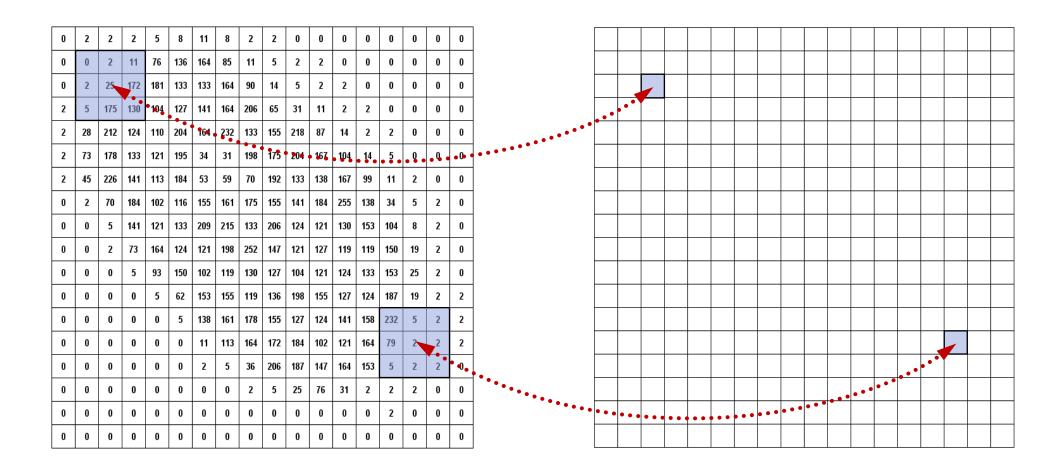
- Two main types of spatial domain operations:
 - Point operations (intensity transformations on individual pixels) Today

- Neighbourhood operations (spatial filtering on groups of pixels)

Point operations (recap)



Neighbourhood operations



Topics and learning goals

• Describe the workings of **neighborhood operations**

Convolution, spatial filtering, linear shift-invariant operations, border problem

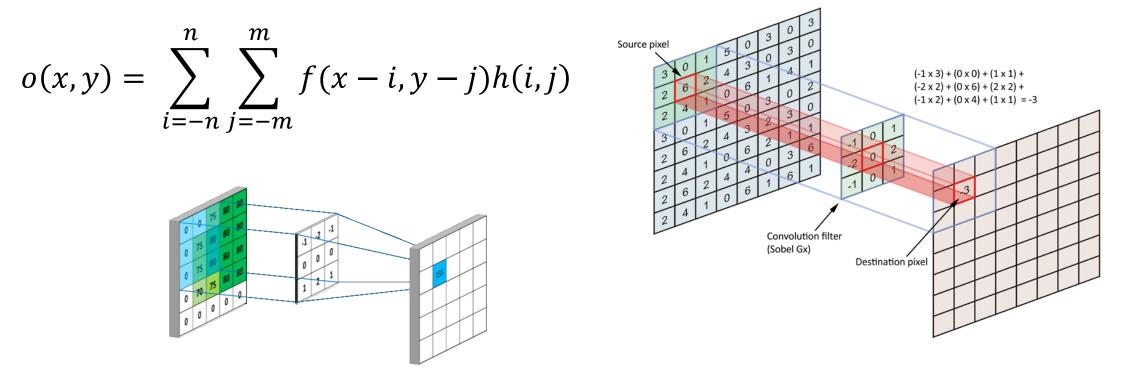
- Understand the effects of various **filtering methods** Uniform filter, Gaussian filter, median filter, smoothing, differentiation, separability, pooling
- Combine filtering operations to perform **image enhancement** Sharpening, unsharp masking, gradient vector & magnitude, edge detection

Spatial filtering on groups of pixels

- Use the gray values in a small **neighbourhood** of a pixel in the input image to produce a new gray value for that pixel in the output image
- Also called **filtering** techniques because, depending on the weights applied to the pixel values, they can suppress (filter out) or enhance information
- Neighbourhood of (*x*, *y*) is usually a square or rectangular subimage centred at (*x*, *y*) and called a **filter**, **mask**, **kernel**, **template**, **window**
- Typical **kernel sizes** are 3×3 pixels, 5×5 pixels, 7×7 pixels, but can be larger and have different shape (e.g. circular rather than rectangular)

Spatial filtering by convolution

 The output image o(x, y) is computed by discrete convolution of the given input image f(x, y) and kernel h(x, y):

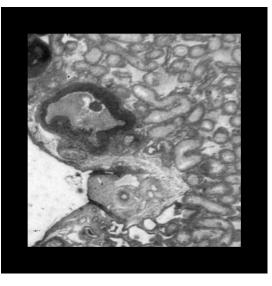


Fixing the border problem

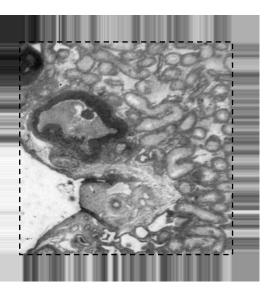
- Expand the image outside the original border using:
 - Padding: Set all additional pixels to a constant (zero) value
 Hard transitions yield border artifacts (requires windowing)
 - Clamping: Repeat all border pixel values indefinitely
 Better border behaviour but arbitrary (no theoretical foundation)
 - Wrapping: Copy pixel values from opposite sides
 Implicitly used in the (fast) Fourier transform
 - Mirroring: Reflect pixel values across borders
 Smooth, symmetric, periodic, no boundary artifacts

Fixing the border problem

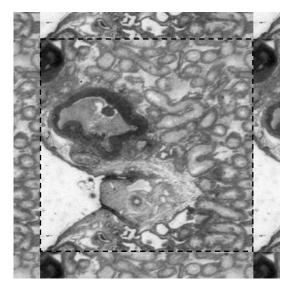
Padding



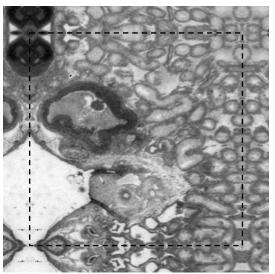
Clamping



Wrapping



Mirroring



Spatial filtering by convolution

- Convolution is a linear, shift-invariant operation
- **Linearity**: If input $f_1(x, y)$ yields output $g_1(x, y)$ and $f_2(x, y)$ yields $g_2(x, y)$, then a linear combination of inputs $a_1f_1(x, y) + a_2f_2(x, y)$ yields the same combination of outputs $a_1g_1(x, y) + a_2g_2(x, y)$, for any constants a_1, a_2
- Shift invariance: If input f(x, y) yields output g(x, y), then the shifted input $f(x \Delta x, y \Delta y)$ yields the shifted output $g(x \Delta x, y \Delta y)$, in other words, the operation does not discriminate between spatial positions

Properties of convolution

For any set of images (functions) f_i the convolution operation * satisfies:

- **Commutativity**: $f_1 * f_2 = f_2 * f_1$
- Associativity: $f_1 * (f_2 * f_3) = (f_1 * f_2) * f_3$
- **Distributivity**: $f_1 * (f_2 + f_3) = f_1 * f_2 + f_1 * f_3$
- **Multiplicativity**: $a \cdot (f_1 * f_2) = (a \cdot f_1) * f_2 = f_1 * (a \cdot f_2)$
- **Derivation**: $(f_1 * f_2)' = f_1' * f_2 = f_1 * f_2'$
- Theorem:

 $f_1 * f_2 \leftrightarrow \hat{f_1} \cdot \hat{f_2}$ convolution in spatial domain amounts to multiplication in spectral domain... (next time)

Simplest smoothing filter

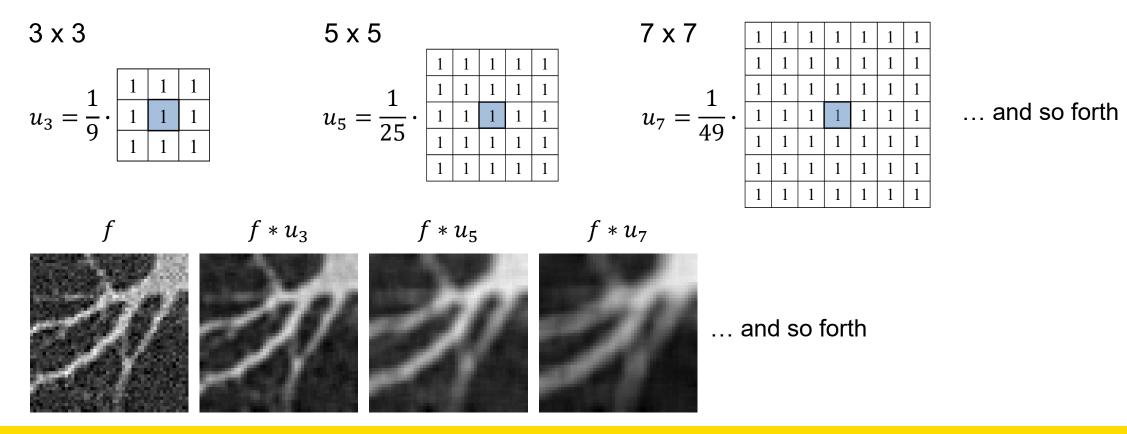
• Calculates the **mean pixel value** in a neighbourhood *N* with |*N*| pixels

$$g(x,y) = \frac{1}{|N|} \sum_{(i,j) \in N} f(x+i,y+j)$$

- Often used for image blurring and noise reduction
- Reduces fluctuations due to disturbances in image acquisition
- Neighbourhood averaging also **blurs the object edges** in the image
- Can use weighted averaging to give more importance to some pixels

Simplest smoothing filter

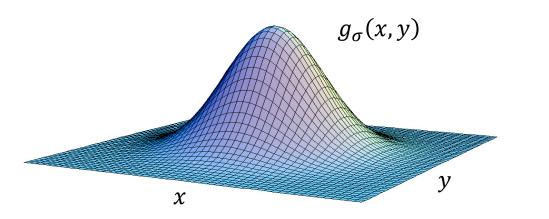
• Also called **uniform filter** as it implicitly uses a uniform kernel

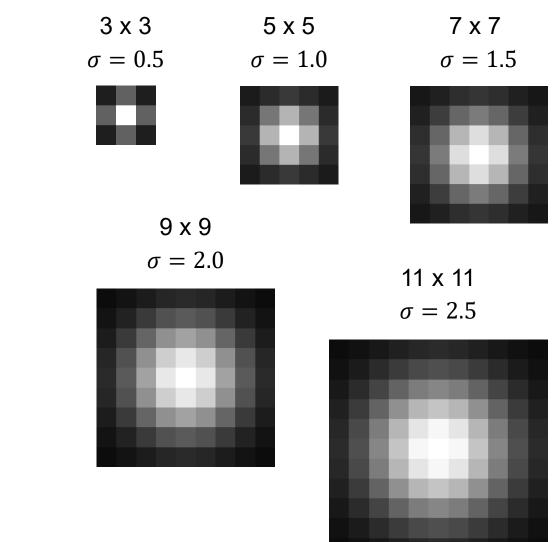


Gaussian filter

• The Gaussian filter is one of the most important basic image filters

$$g_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$





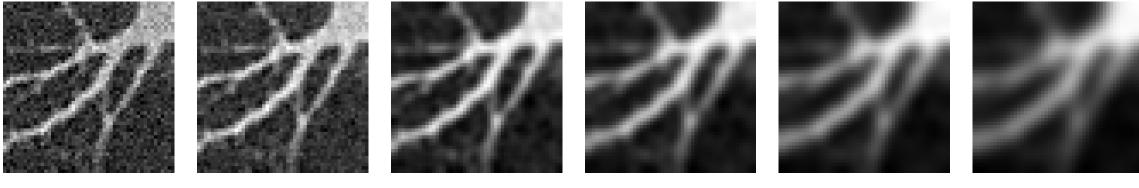
Gaussian filter

Many nice properties motivate the use of the Gaussian filter:

- It is the only filter that is both separable and circularly symmetric
- It has optimal joint localization in spatial and frequency domain
- The Fourier transform of a Gaussian is also a Gaussian function
- The n-fold convolution of any low-pass filter converges to a Gaussian
- It is infinitely smooth so it can be differentiated to any desired degree
- It scales naturally (sigma) and allows for consistent scale-space theory

Gaussian filtering examples

Input Gaussian smoothed...

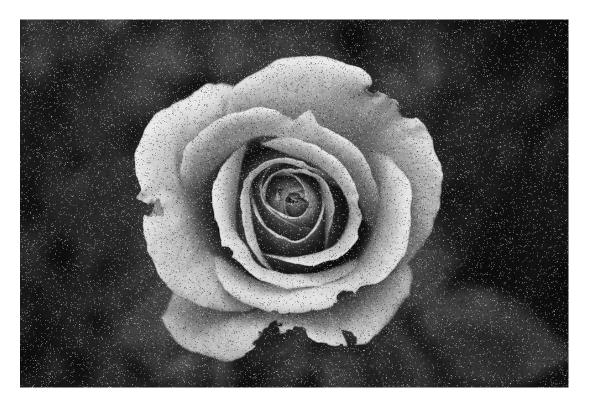


 $\sigma = 0.5$ $\sigma = 1.0$ $\sigma = 1.5$ $\sigma = 2.0$ $\sigma = 2.5$

Gaussian filtering examples

Input

Gaussian smoothed



Copyright (C) UNSW

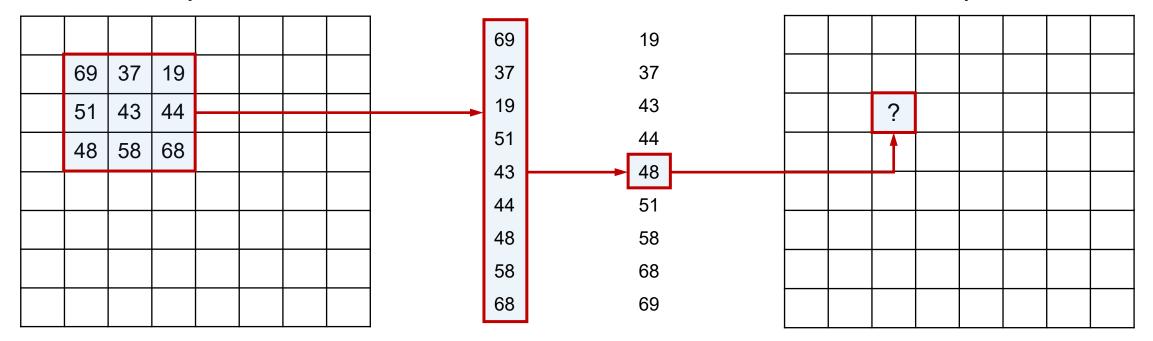
Median filter

- Is an order-statistics filter (based on ordering and ranking pixel values)
- Calculates the median pixel value in a neighbourhood N with |N| pixels
- The median value *m* of a set of ordered values is the **middle value**
- At most half the values in the set are < m and the other half > m

In the case of an even number of values, often the median is taken to be the arithmetic mean of the two middle values

Median filter

Input



Taking the minimum or maximum instead of the median is called **min-filtering** and **max-filtering** respectively

Median filter

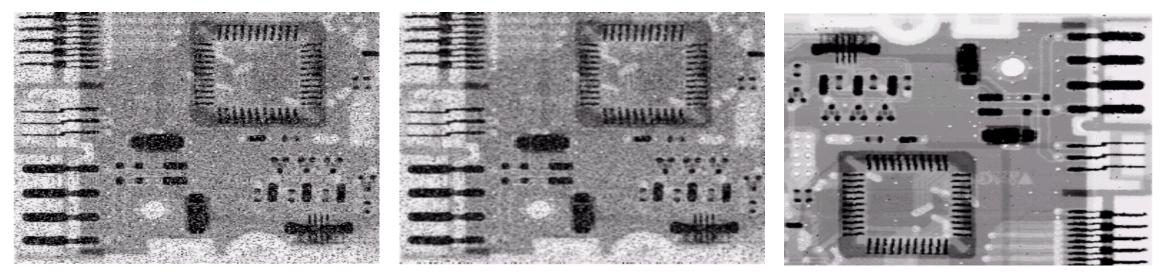
- Forces pixels with distinct intensities to be more like their neighbours
- It eliminates isolated intensity spikes (salt and pepper image noise)
- Neighbourhood is **typically of size** $n \times n$ **pixels** with n = 3, 5, 7, ...
- This also eliminates pixel clusters (light or dark) with area $< n^2/2$
- Is not a convolution filter but an example of a **nonlinear filter**

Median filtering example

Input

3 x 3 mean filtered

3 x 3 median filtered

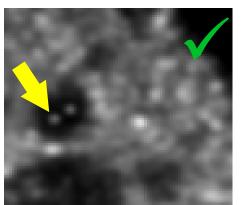


Noise pixels are completely removed rather than averaged out

Gaussian versus median filtering

Original

Gaussian

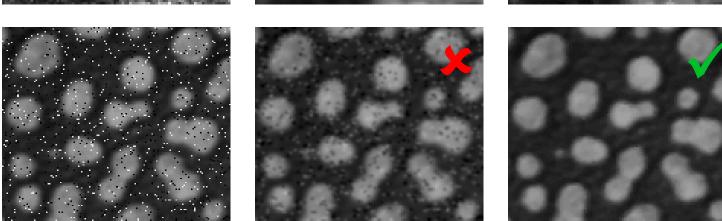


Median

Gaussian filtering is best if small objects must be retained

Example 2

Example 1



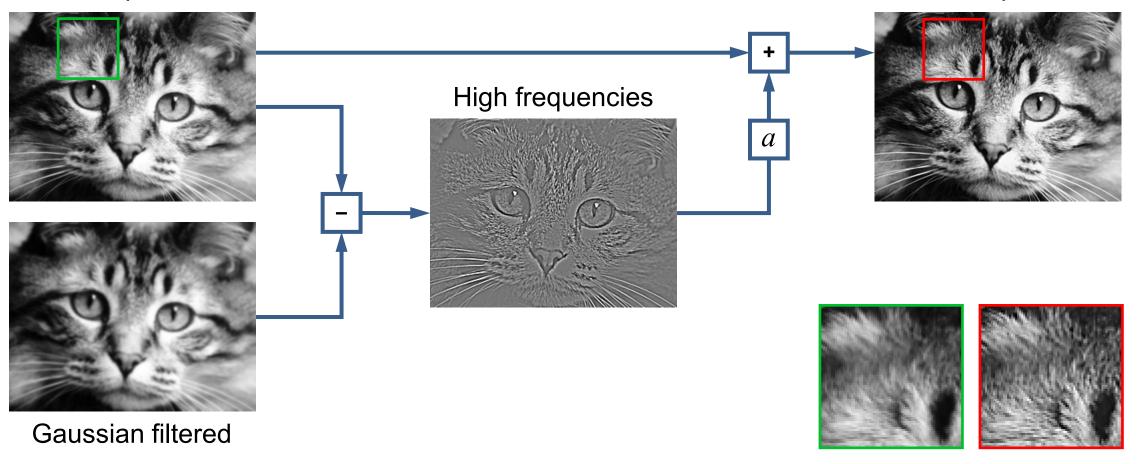
Median filtering is best if small objects must be removed

Sharpening by unsharp masking

Input

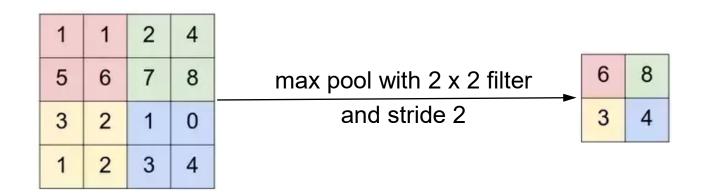
Output

23



Pooling

- Combines filtering and downsampling in one operation
- Examples include max / min / median / average pooling
- Makes the image smaller and reduces computations
- Popular in deep convolutional neural networks



Derivative filters

- Spatial derivatives respond to intensity changes (such as object edges)
- In digital images they are approximated using finite differences
- Different possible ways to take finite differences

Forward difference

 $\frac{\partial f}{\partial x} \approx f(x+1) - f(x)$

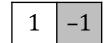
Backward difference

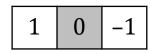
 $\frac{\partial f}{\partial x} \approx f(x) - f(x-1)$

Central difference

$$\frac{\partial f}{\partial x} \approx f(x+1) - f(x-1)$$

Kernel:





Derivative filters

• Second-order spatial derivative using finite differences

$$\frac{\partial^2 f}{\partial x^2} \approx \frac{\partial f}{\partial x}(x) - \frac{\partial f}{\partial x}(x-1) = [f(x+1) - f(x)] - [f(x) - f(x-1)] = f(x+1) - 2f(x) + f(x-1)$$

Backward difference
$$\frac{1 - 2 - 1}{1}$$

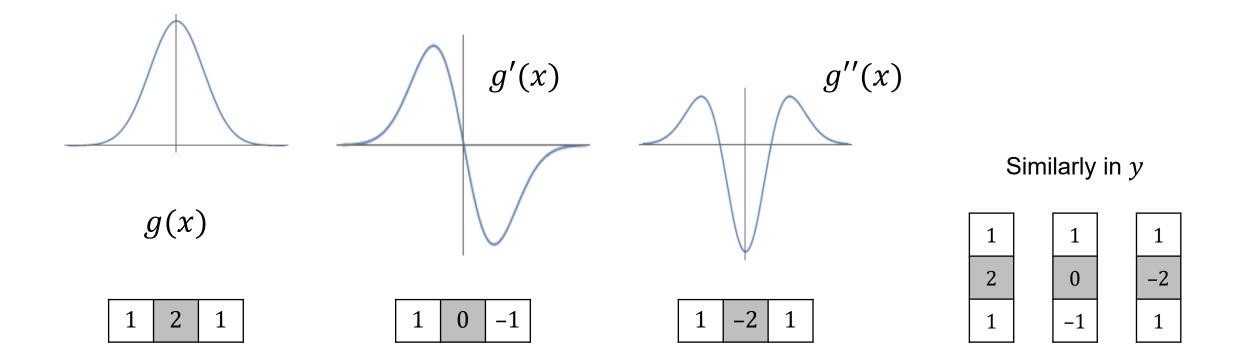
$$\frac{\partial^2 f}{\partial x^2} \approx \frac{\partial f}{\partial x}\left(x + \frac{1}{2}\right) - \frac{\partial f}{\partial x}\left(x - \frac{1}{2}\right) = [f(x+1) - f(x)] - [f(x) - f(x-1)] = f(x+1) - 2f(x) + f(x-1)$$

Central difference 1/2

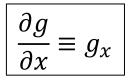
Central differences 1/2

Derivative filters

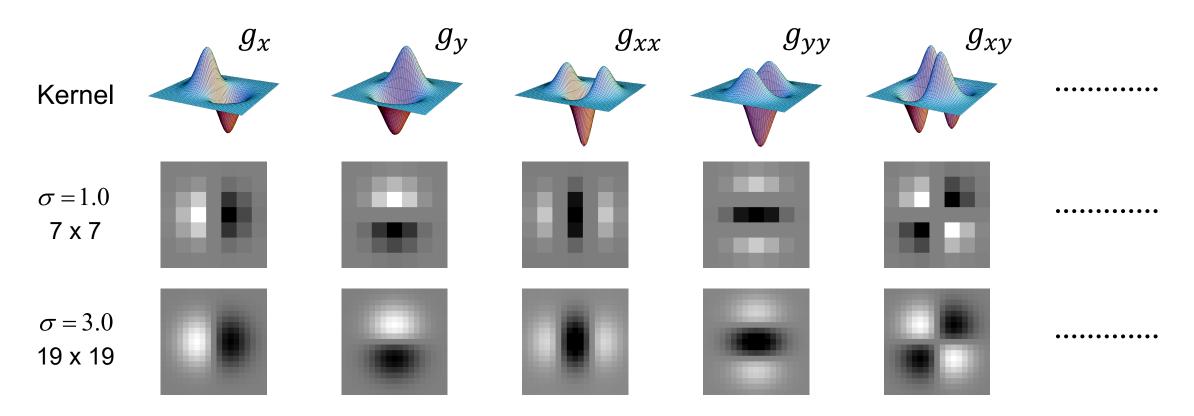
• Sampled approximations of the continuous Gaussian derivatives



Gaussian derivative filters

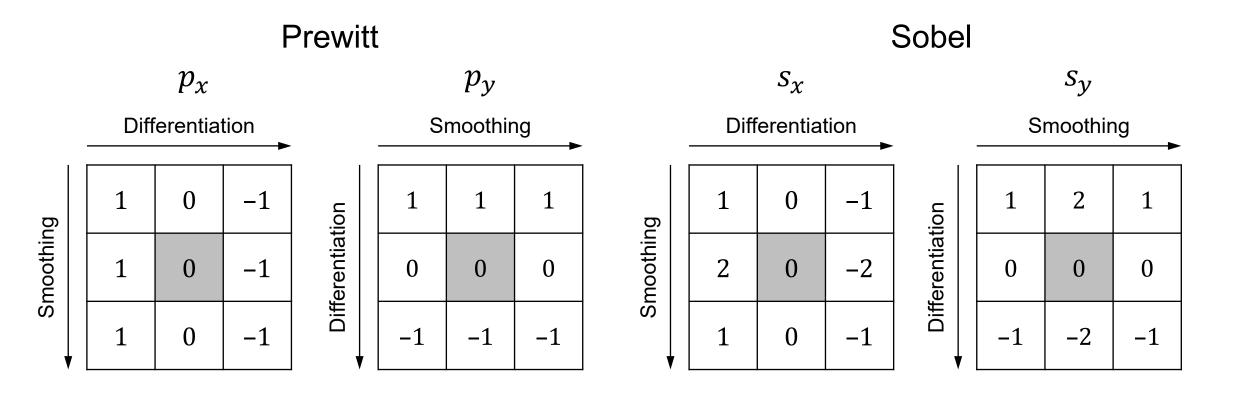


• Extension of Gaussian filter kernels to 2D and different spatial scales

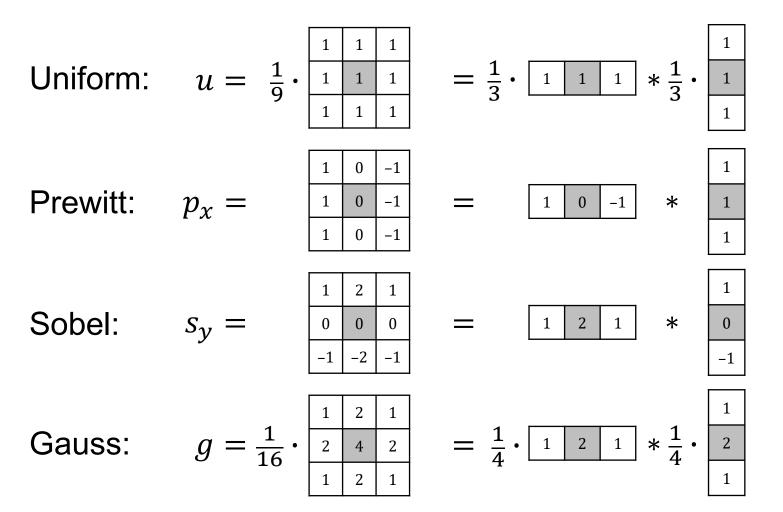


Prewitt and Sobel kernels

• Differentiation in one dimension and smoothing in the other dimension



Separable filter kernels



Smoothing in *x* Smoothing in *y* First derivative in xSmoothing in *y* Smoothing in xFirst derivative in *y* Smoothing in xSmoothing in *y*

Separable filter kernels

• Allow for a much more computationally efficient implementation

$$g(x,y) = \frac{1}{16} \cdot \boxed{\begin{array}{c}1 & 2 & 1\\ 2 & 4 & 2\\ 1 & 2 & 1\end{array}} \rightarrow o(x,y) = (f * g)(x,y) = \sum_{j=-1}^{1} \sum_{i=-1}^{1} f(x-i,y-j)g(i,j)$$

Can be rewritten as:

$$g(x,y) = g(x)g(y)$$

$$g(x) = \frac{1}{4} \cdot \boxed{\begin{array}{c}1 & 2 & 1\end{array}} \qquad o(x,y) = \sum_{j=-1}^{1} \left[\sum_{i=-1}^{1} f(x-i,y-j)g(i)\right]g(j)$$

Even for law

2 x (3 multiplies + 2 adds) = 10 ops/pixel

Even higher gains for larger kernels and 3D images

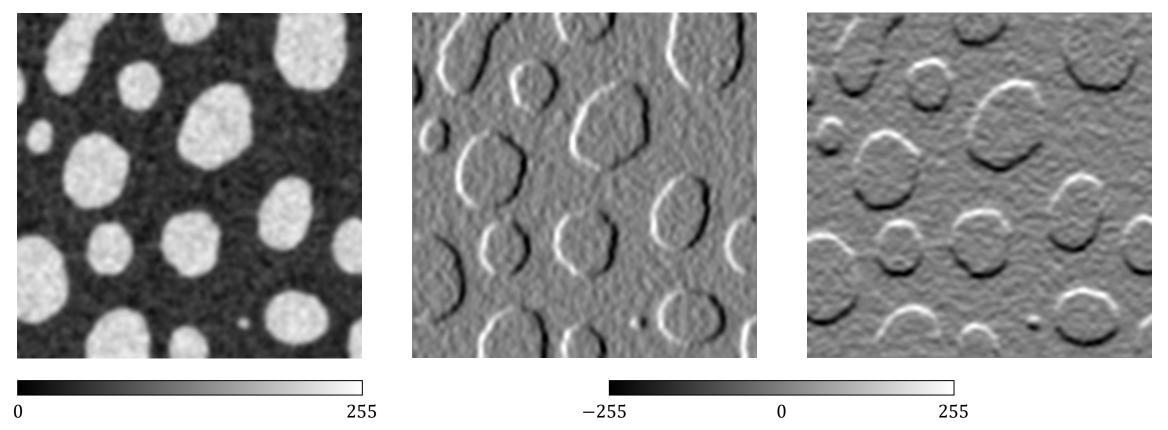
3

 $g(y) = \frac{1}{4} \cdot \left| \begin{array}{c} 1 \end{array} \right| 2$

1

Example of Prewitt filtering

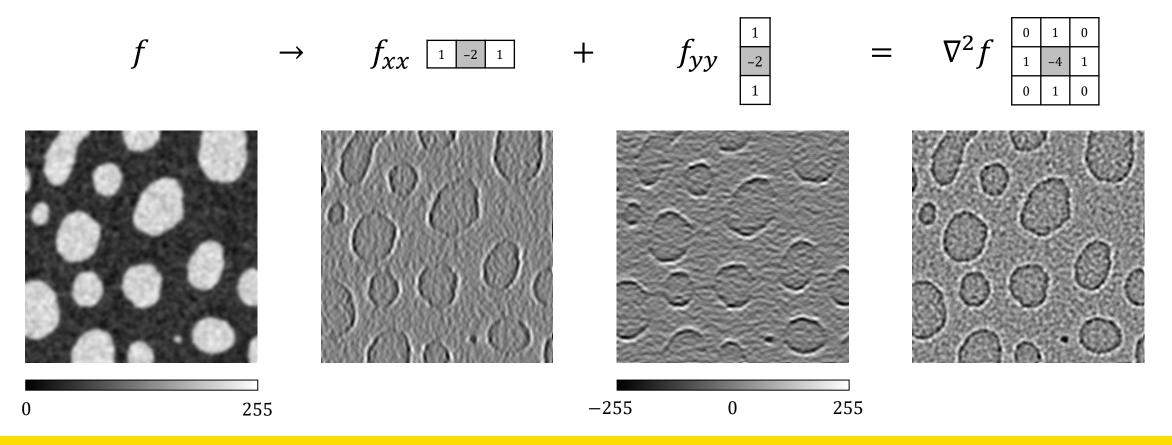
 $f * p_y$



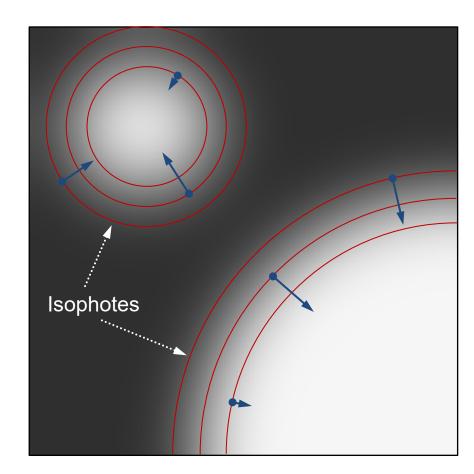
 $f * p_x$

Laplacean filtering

• Approximating the sum of second-order derivatives



Intensity gradient vector



Gradient vector (2D)

 $\nabla f(x, y) = \left[f_x(x, y), f_y(x, y)\right]^T$

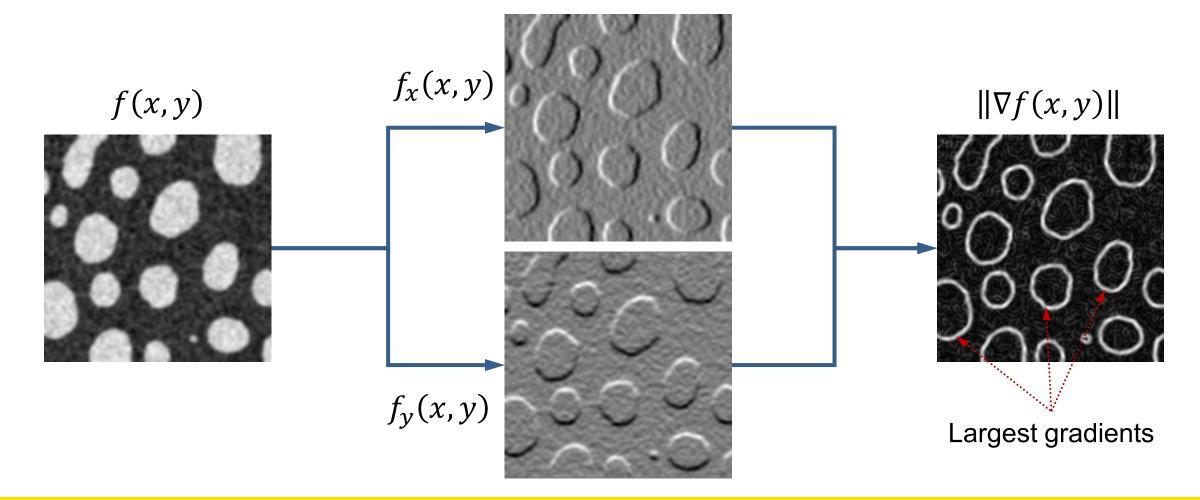
- Points in the direction of steepest intensity increase
- Is orthogonal to isophotes (lines of equal intensity)

Gradient magnitude (2D)

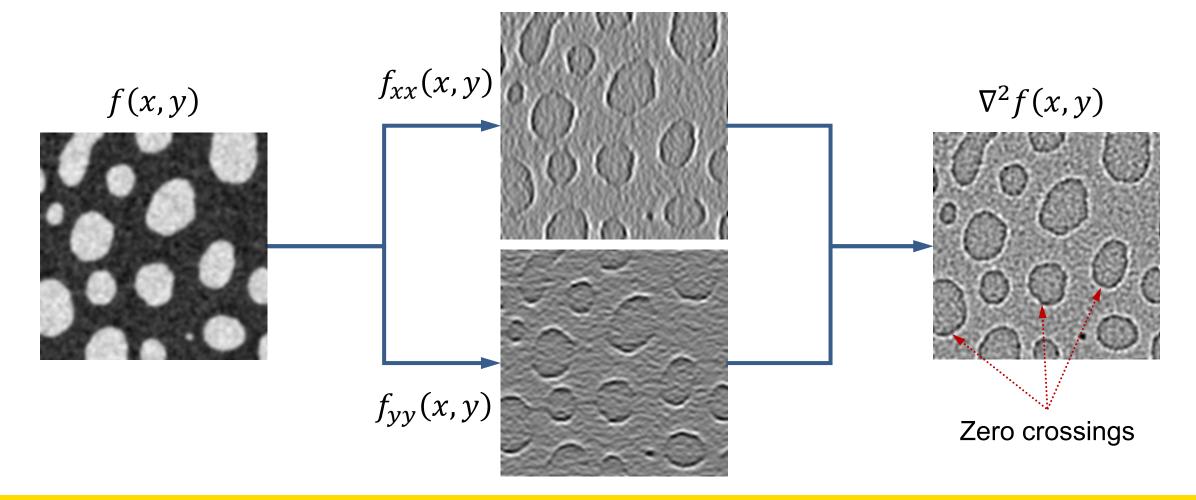
$$\|\nabla f(x,y)\| = \sqrt{f_x^2(x,y) + f_y^2(x,y)}$$

- Represents the length of the gradient vector
- Is the magnitude of the local intensity change

Edge detection with the gradient magnitude

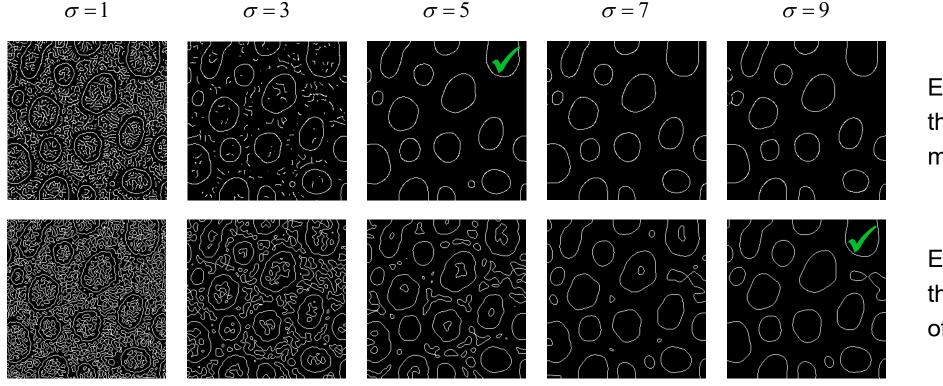


Edge detection with the Laplacean



Selecting the right spatial scale

• Computing image derivatives using Gaussian derivative kernels



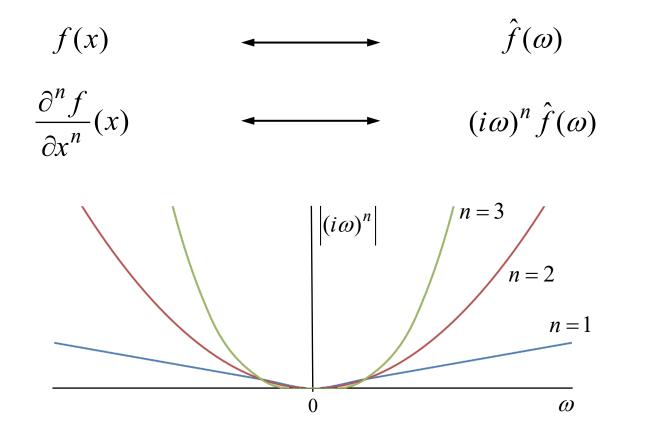
Edges from thresholding local maxima of $\|\nabla f(x, y)\|$

Edges from finding the zero-crossings of $\nabla^2 f(x, y)$

Differentiation in the Fourier domain

Spatial domain

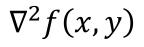
Fourier domain



Differentiation suppresses low frequencies but blows up high frequencies (including noise)

Sharpening using the Laplacean

f(x,y)



 $f(x,y) - \nabla^2 f(x,y)$

Copyright (C) UNSW

COMP9517 23T2W2 Image Processing Part 2-1

Further reading on discussed topics

- Chapter 3 of Gonzalez and Woods 2002
- Sections 3.1-3.3 of Szeliski

Acknowledgement

• Some images drawn from the above resources

