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Types of image processing (recap)
• Two main types of image processing operations:

– Spatial domain operations (in image space)
– Transform domain operations (mainly in Fourier space)

• Two main types of spatial domain operations:

– Point operations (intensity transformations on individual pixels)
– Neighbourhood operations (spatial filtering on groups of pixels)
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Point operations (recap)
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Neighbourhood operations
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Topics and learning goals
• Describe the workings of neighborhood operations

Convolution, spatial filtering, linear shift-invariant operations, border problem 

• Understand the effects of various filtering methods
Uniform filter, Gaussian filter, median filter, smoothing, differentiation, separability, pooling

• Combine filtering operations to perform image enhancement
Sharpening, unsharp masking, gradient vector & magnitude, edge detection
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Spatial filtering on groups of pixels
• Use the gray values in a small neighbourhood of a pixel in the input image to 

produce a new gray value for that pixel in the output image

• Also called filtering techniques because, depending on the weights applied to 
the pixel values, they can suppress (filter out) or enhance information

• Neighbourhood of (𝑥𝑥,𝑦𝑦) is usually a square or rectangular subimage centred
at (𝑥𝑥,𝑦𝑦) and called a filter, mask, kernel, template, window

• Typical kernel sizes are 3 × 3 pixels, 5 × 5 pixels, 7 × 7 pixels, but can be 
larger and have different shape (e.g. circular rather than rectangular)
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Spatial filtering by convolution
• The output image 𝑜𝑜(𝑥𝑥,𝑦𝑦) is computed by discrete convolution of the given 

input image 𝑓𝑓(𝑥𝑥,𝑦𝑦) and kernel ℎ(𝑥𝑥,𝑦𝑦):
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𝑜𝑜 𝑥𝑥,𝑦𝑦 = �
𝑖𝑖=−𝑛𝑛

𝑛𝑛

�
𝑗𝑗=−𝑚𝑚

𝑚𝑚

𝑓𝑓(𝑥𝑥 − 𝑖𝑖,𝑦𝑦 − 𝑗𝑗)ℎ 𝑖𝑖, 𝑗𝑗
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Fixing the border problem
• Expand the image outside the original border using:

– Padding: Set all additional pixels to a constant (zero) value
Hard transitions yield border artifacts (requires windowing)

– Clamping: Repeat all border pixel values indefinitely
Better border behaviour but arbitrary (no theoretical foundation)

– Wrapping: Copy pixel values from opposite sides
Implicitly used in the (fast) Fourier transform

– Mirroring: Reflect pixel values across borders
Smooth, symmetric, periodic, no boundary artifacts
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Fixing the border problem
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Spatial filtering by convolution
• Convolution is a linear, shift-invariant operation

• Linearity: If input 𝑓𝑓1(𝑥𝑥,𝑦𝑦) yields output 𝑔𝑔1(𝑥𝑥,𝑦𝑦) and 𝑓𝑓2(𝑥𝑥,𝑦𝑦) yields 𝑔𝑔2(𝑥𝑥,𝑦𝑦), 
then a linear combination of inputs 𝑎𝑎1𝑓𝑓1 𝑥𝑥,𝑦𝑦 + 𝑎𝑎2𝑓𝑓2(𝑥𝑥,𝑦𝑦) yields the same 
combination of outputs 𝑎𝑎1𝑔𝑔1 𝑥𝑥,𝑦𝑦 + 𝑎𝑎2𝑔𝑔2(𝑥𝑥,𝑦𝑦), for any constants 𝑎𝑎1, 𝑎𝑎2

• Shift invariance: If input 𝑓𝑓(𝑥𝑥,𝑦𝑦) yields output 𝑔𝑔(𝑥𝑥,𝑦𝑦), then the shifted input 
𝑓𝑓(𝑥𝑥 − ∆𝑥𝑥,𝑦𝑦 − ∆𝑦𝑦) yields the shifted output 𝑔𝑔(𝑥𝑥 − ∆𝑥𝑥,𝑦𝑦 − ∆𝑦𝑦), in other words, 
the operation does not discriminate between spatial positions
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Properties of convolution
For any set of images (functions) 𝑓𝑓𝑖𝑖 the convolution operation ∗ satisfies:

• Commutativity: 𝑓𝑓1 ∗ 𝑓𝑓2 = 𝑓𝑓2 ∗ 𝑓𝑓1
• Associativity: 𝑓𝑓1 ∗ (𝑓𝑓2 ∗ 𝑓𝑓3) = (𝑓𝑓1∗ 𝑓𝑓2) ∗ 𝑓𝑓3
• Distributivity: 𝑓𝑓1 ∗ 𝑓𝑓2 + 𝑓𝑓3 = 𝑓𝑓1 ∗ 𝑓𝑓2 + 𝑓𝑓1 ∗ 𝑓𝑓3
• Multiplicativity: 𝑎𝑎 � 𝑓𝑓1 ∗ 𝑓𝑓2 = 𝑎𝑎 � 𝑓𝑓1 ∗ 𝑓𝑓2 = 𝑓𝑓1 ∗ (𝑎𝑎 � 𝑓𝑓2)

• Derivation: 𝑓𝑓1 ∗ 𝑓𝑓2 ′ = 𝑓𝑓1′ ∗ 𝑓𝑓2 = 𝑓𝑓1 ∗ 𝑓𝑓2′

• Theorem: 𝑓𝑓1 ∗ 𝑓𝑓2 ↔ �𝑓𝑓1 � �𝑓𝑓2 convolution in spatial domain amounts to
multiplication in spectral domain… (next time)
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Simplest smoothing filter
• Calculates the mean pixel value in a neighbourhood 𝑁𝑁 with 𝑁𝑁 pixels

• Often used for image blurring and noise reduction

• Reduces fluctuations due to disturbances in image acquisition

• Neighbourhood averaging also blurs the object edges in the image

• Can use weighted averaging to give more importance to some pixels
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𝑔𝑔 𝑥𝑥,𝑦𝑦 =
1
𝑁𝑁
��

(𝑖𝑖,𝑗𝑗)∈𝑁𝑁
𝑓𝑓(𝑥𝑥 + 𝑖𝑖,𝑦𝑦 + 𝑗𝑗)

COMP9517 23T2W2 Image Processing Part 2-1



Simplest smoothing filter
• Also called uniform filter as it implicitly uses a uniform kernel
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Gaussian filter
• The Gaussian filter is one of the most

important basic image filters
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Gaussian filter
Many nice properties motivate the use of the Gaussian filter:

• It is the only filter that is both separable and circularly symmetric

• It has optimal joint localization in spatial and frequency domain

• The Fourier transform of a Gaussian is also a Gaussian function

• The n-fold convolution of any low-pass filter converges to a Gaussian

• It is infinitely smooth so it can be differentiated to any desired degree

• It scales naturally (sigma) and allows for consistent scale-space theory
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Gaussian filtering examples
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Input Gaussian smoothed…

𝜎𝜎 = 0.5 𝜎𝜎 = 1.0 𝜎𝜎 = 1.5 𝜎𝜎 = 2.0 𝜎𝜎 = 2.5
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Gaussian filtering examples
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Input Gaussian smoothed
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Median filter
• Is an order-statistics filter (based on ordering and ranking pixel values)

• Calculates the median pixel value in a neighbourhood 𝑁𝑁 with 𝑁𝑁 pixels

• The median value 𝑚𝑚 of a set of ordered values is the middle value

• At most half the values in the set are < 𝑚𝑚 and the other half > 𝑚𝑚
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Set:          115, 10, 25, 12, 221, 46, 91, 178, 193

Ordered:  10, 12, 25, 46, 91, 115, 178, 193, 221

Median

In the case of an even number of values, 
often the median is taken to be the arithmetic 

mean of the two middle values
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Median filter
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Taking the minimum or maximum instead of the median is called min-filtering and max-filtering respectively
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Median filter
• Forces pixels with distinct intensities to be more like their neighbours

• It eliminates isolated intensity spikes (salt and pepper image noise)

• Neighbourhood is typically of size 𝒏𝒏 × 𝒏𝒏 pixels with 𝑛𝑛 = 3, 5, 7, …

• This also eliminates pixel clusters (light or dark) with area < 𝑛𝑛2/2

• Is not a convolution filter but an example of a nonlinear filter
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Median filtering example
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Input 3 x 3 mean filtered 3 x 3 median filtered

Noise pixels are completely removed rather than averaged out
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Gaussian versus median filtering
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small objects must be retained

Median filtering is best if small 
objects must be removed
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Sharpening by unsharp masking
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Pooling
• Combines filtering and downsampling in one operation

• Examples include max / min / median / average pooling

• Makes the image smaller and reduces computations

• Popular in deep convolutional neural networks
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max pool with 2 x 2 filter
and stride 2
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Derivative filters
• Spatial derivatives respond to intensity changes (such as object edges)

• In digital images they are approximated using finite differences

• Different possible ways to take finite differences
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𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
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𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

≈ 𝑓𝑓 𝑥𝑥 − 𝑓𝑓(𝑥𝑥 − 1)

Forward difference Backward difference Central difference

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
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1 0 –11 –11 –1Kernel:



Derivative filters
• Second-order spatial derivative using finite differences
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Derivative filters
• Sampled approximations of the continuous Gaussian derivatives
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Gaussian derivative filters
• Extension of Gaussian filter kernels to 2D and different spatial scales
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Prewitt and Sobel kernels
• Differentiation in one dimension and smoothing in the other dimension
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Separable filter kernels
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Separable filter kernels
• Allow for a much more computationally efficient implementation
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9 multiplies + 8 adds = 17 ops/pixelCan be rewritten as:

𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝑔𝑔 𝑥𝑥 𝑔𝑔(𝑦𝑦)
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2 x (3 multiplies + 2 adds) = 10 ops/pixel

Even higher gains 
for larger kernels 
and 3D images



Example of Prewitt filtering
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0 255

𝑓𝑓 𝑓𝑓 ∗ 𝑝𝑝𝑥𝑥 𝑓𝑓 ∗ 𝑝𝑝𝑦𝑦

0 255−255



Laplacean filtering
• Approximating the sum of second-order derivatives

Copyright (C) UNSW 33COMP9517 23T2W2 Image Processing Part 2-1

0 255 0 255−255

𝑓𝑓 → 𝑓𝑓𝑥𝑥𝑥𝑥 1 –2 1 + 𝑓𝑓𝑦𝑦𝑦𝑦
1

–2

1

= ∇2𝑓𝑓
0 1 0

1 –4 1

0 1 0



Intensity gradient vector
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• Points in the direction of steepest intensity increase
• Is orthogonal to isophotes (lines of equal intensity)

Gradient vector (2D)

Gradient magnitude (2D)

• Represents the length of the gradient vector
• Is the magnitude of the local intensity change

Isophotes

∇𝑓𝑓 𝑥𝑥, 𝑦𝑦 = 𝑓𝑓𝑥𝑥 𝑥𝑥,𝑦𝑦 , 𝑓𝑓𝑦𝑦 𝑥𝑥,𝑦𝑦 𝑇𝑇

∇𝑓𝑓 𝑥𝑥, 𝑦𝑦 = 𝑓𝑓𝑥𝑥2 𝑥𝑥, 𝑦𝑦 + 𝑓𝑓𝑦𝑦2 𝑥𝑥,𝑦𝑦



Edge detection with the gradient magnitude
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Largest gradients

𝑓𝑓 𝑥𝑥,𝑦𝑦 𝑓𝑓𝑥𝑥 𝑥𝑥,𝑦𝑦

𝑓𝑓𝑦𝑦 𝑥𝑥,𝑦𝑦

∇𝑓𝑓 𝑥𝑥,𝑦𝑦



Edge detection with the Laplacean
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Zero crossings

𝑓𝑓 𝑥𝑥,𝑦𝑦 𝑓𝑓𝑥𝑥𝑥𝑥 𝑥𝑥,𝑦𝑦

𝑓𝑓𝑦𝑦𝑦𝑦 𝑥𝑥,𝑦𝑦

∇2𝑓𝑓 𝑥𝑥,𝑦𝑦



Selecting the right spatial scale
• Computing image derivatives using Gaussian derivative kernels
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Edges from 
thresholding local 
maxima of ∇𝑓𝑓 𝑥𝑥,𝑦𝑦

Edges from finding 
the zero-crossings 
of ∇2𝑓𝑓 𝑥𝑥,𝑦𝑦

1σ = 3σ = 5σ = 7σ = 9σ =







Differentiation in the Fourier domain
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Sharpening using the Laplacean
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𝑓𝑓 𝑥𝑥,𝑦𝑦 ∇2𝑓𝑓 𝑥𝑥,𝑦𝑦 𝑓𝑓 𝑥𝑥,𝑦𝑦 − ∇2𝑓𝑓 𝑥𝑥,𝑦𝑦



Further reading on discussed topics
• Chapter 3 of Gonzalez and Woods 2002

• Sections 3.1-3.3 of Szeliski
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