COMP9517

Computer Vision

2023 Term 2 Week 1

Professor Erik Meijering

Introduction

What is computer vision?

Computer science perspective

Computer vision is the interdisciplinary field that develops theories and methods to allow computers extract relevant information from digital images or videos

Computer engineering perspective

Computer vision is the interdisciplinary field that develops algorithms and tools to automate perceptual tasks normally performed by the human visual system

Every picture tells a story

"A picture is worth a thousand words"

Computer vision

automates and integrates many information processing and representation approaches useful for visual perception

https://en.wikipedia.org/wiki/montparnasse_derailment

Can computers match (or beat) humans?

Yes and No

 Humans are still better at "hard" tasks

Ambiguous data, leveraging prior knowledge, continual learning, working across applications

 Computers can be better at "easy" tasks

High-quality data, using mathematical models, consistent training set, single well-defined application

Which objects are brighter?

Copyright (C) UNSW

COMP9517 23T2W1 Introduction

Which side of this object is brighter?

Copyright (C) UNSW

Which side of this object is brighter?

Which side of this object is brighter?

Are the cells popping in or out?

Copyright (C) UNSW

Are the cells popping in or out?

Copyright (C) UNSW

What pattern do the squares form?

What pattern do the squares form?

What object do you see in this image?

Copyright (C) UNSW

What object do you see in this image?

Copyright (C) UNSW

How do the main lines run with respect to each other?

How do the main lines run with respect to each other?

In which direction are these particles moving?

Copyright (C) UNSW

COMP9517 23T2W1 Introduction

https://www.youtube.com/watch?v=a7efEqgpIrE

Course rationale

Human vision has its limitations

- Intensities, shapes, patterns, motions can be misinterpreted
- Is labor intensive, time-consuming, subjective, error-prone

Computer vision can potentially improve this

- Computers can work day and night without getting tired
- Analyze information quantitatively and objectively
- Potentially more accurate, precise, reproducible

If the methods and tools are well designed!

Application: 3D shape reconstruction

Project <u>VarCity</u> recreates 3D city models using social media photos

Application: image captioning

Google's Show and Tell open-source image captioning model in TensorFlow

Application: intelligent collision avoidance

Iris Automation provides safer drone operation with intelligent collision avoidance

Application: face detection and recognition

Facebook's <u>DeepFace</u> project nears human accuracy in identifying faces

Copyright (C) UNSW

COMP9517 23T2W1 Introduction

Application: face detection and recognition

For improving image capture on digital cameras

Application: vision-based biometrics

Who is she?

How the Afghan girl was identified by her iris patterns

The remarkable story of Sharbat Gula, first photographed in 1984 aged 12 in a refugee camp in Pakistan by National Geographic photographer Steve McCurry, and traced 18 years later to a remote part of Afghanistan where she was again photographed by McCurry...

Application: logging in without a password

Fingerprint scanners on modern laptops and other devices

Windows Hello makes logging in as easy as looking at your PC

Copyright (C) UNSW

COMP9517 23T2W1 Introduction

Application: optical character recognition (OCR)

Converting scanned documents or number plates to processable text

Application: landmark recognition

	A Not logged in Talk Contributions Create account Log in			
	Article Talk Read Edit View history Search Wikipedia Q			
	1			
	WIKIP	Tower Bridge		
	The	kipedia, the free encyclopedia		
I made		autha bridan in Caramanta California ana Taura Dridan (California). Fantha a	ation in On Orale Industrial and Taxan Deidan military	
	Main page Contents	station.	ation in Co. Cork, Ireland, see Tower Bridge railway	
	Current events	Towar Bridge is a Grade Lileted combined bascule and suspension bridge in		
	Random article	London, built between 1886 and 1894, designed by Horace Jones and engineered	Tower Bridge	
	About Wikipedia	by John Wolfe Barry. The bridge crosses the River Thames close to the Tower of		
	Donate	London and is one of five London bridges owned and maintained by the Bridge	1.444	
		House Estates, a charitable trust founded in 1282. The bridge was constructed to		
	Contribute	give better access to the East End of London, which had expanded its commercial		
A CONTRACTOR A CONTRACTOR	Help Learn to edit	potential in the 19th century. The bridge was opened by Edward, Prince of Wales		
	Community portal	and Alexandra, Princess of Wales in 1894.		
	Recent changes	The bridge is 800 feet (240 m) in length and consists of two 213-foot (65 m) bridge	View from Shad Thames	
	Upload file	towers connected at the upper level by two horizontal walkways, and a central pair	Coordinates 🔍 51°30′20*N 0°04′31*W	
	Tools	of bascules that can open to allow shipping. Originally hydraulically powered, the	Carries London Inner Ring Road	
	What links here	operating mechanism was converted to an electro-hydraulic system in 1972. The	Crosses River Thames	
	Related changes	bridge is part of the A100 ^[1] London Inner Ring Road and thus the boundary of the	Locale London boroughs:	
	Special pages	London congestion charge zone, and remains an important traffic route with 40,000	 north side: Tower Hamlets south side: Southwark 	
	Permanent link Page information	crossings every day. The bridge deck is treely accessible to both vehicles and	Named for Tower of London	
	Cite this page	pedestrians, whereas the bridge's twin towers, high-level walkways and victorian	Maintained by Bridge House Estates	
	Wikidata item	engine rooms form part of the Tower Bridge Exhibition.	Heritage status Grade Llisted building	
	Print/export	Tower Bridge has become a recognisable London landmark. It is sometimes	Website www.towerbridge.org.ukr@	
	Download as PDF	contused with London Bridge, about 0.5 miles (0.80 km) upstream, which has led to	Preceded by London Bridge	
	Printable version	a popular urban regend about an American purchasing the wrong bridge. Several struct pilots have flown underneath the bridge including the pioneering Francis	Followed by Elizabeth II Bridge	
TOWN RECOV	la alber arriente	McClean.	Characteristics	
	Wikimedia Commons		Design Bascule bridge / Suspension	
		Contents [hide]	Bridge	
	Languages 😱	1 History	Heleht 212 feet (240 m)	
	العربية Eepañol	12 Construction	Height 213 leet (65 m)	
	हिन्दी	1.3 Opening	Architect Horace Jones	
	Bahasa Indonesia	1.4 20th century	Construction 21 June 1886	
	Italiano	1.5 21st century	start	
	Nederlands Pyccywii	2 Design	Construction end 1894	
	اردو	2.1 Structure	Opened 30 June 1894	
	中文	2.2 Hydraulic system	Location	
	沟 68 more	2.3 Signalling and control	Walthamstow	
	Edit linko	3 I Read	Hampstead	
	Edit links	0.0 Devlection	Camden Town Stratford Barking	

Application: autonomous vehicles

Intel's Mobileye makes cars safer and more autonomous

Application: space exploration

NASA's Mars Exploration Rover Spirit autonomously captured this picture in 2007

Vision systems used for panorama stitching, 3D terrain modeling, obstacle detection, position tracking

See Computer Vision on Mars for more information

Application: machine vision in robotics

NASA's Mars Spirit Rover

Copyright (C) UNSW

Application: medical imaging

Computer Aided Diagnosis

Image Guided Surgery

Application: video surveillance

Software from TrafficVision turns traffic cameras into an intelligent sensors

- Traffic monitoring
- Action recognition
- Incident detection
- Speed estimation
- Vehicle counting

. . .

Goals and challenges of computer vision

- Extract useful information from images, both metric and semantic
- Data heterogeneity, ambiguity, and complexity are a big challenge
- Significant progress in recent years due to various improvements:
 - Processing power
 Storage capacity
 - Memory capacity
 Data availability
- Careful design of every step in the computer vision workflow: images > measurements > representation > algorithms for learning and inference

Computer vision tasks

- Obtain simple inferences from individual pixel values
- Group pixels to separate object regions or infer shape information
- Recognise objects using geometric or statistical pixel information
- Combine information from multiple images into a coherent whole

Requires understanding of the **physics of imaging** and the use of **mathematical and statistical models** for information extraction

Low-level computer vision

This concerns mostly **image processing** (image in > image out)

- **Sensing**: image capture and digitization
- **Preprocessing**: suppress noise and enhance object features
- Segmentation: separate objects from background and partition them
- **Description**: compute feature maps which differentiate objects
- Labeling: assign labels to image segments (regions of interest)

High-level computer vision

This concerns deeper **image analysis** (image in > knowledge out)

- **Detection**: detect, localize, count objects of interest
- **Recognition**: identify object types based on low-level information
- **Classification**: assign unique labels to recognized objects
- Interpretation: assign meaning to groups of recognized objects
- Scene analysis: complete understanding of the captured scene

Assumed knowledge

To do this course successfully you should:

- Be able to program well in **Python** or willing to learn it independently
- Be familiar with data structures and algorithms and basic statistics
- Be able/learn to use software packages (OpenCV, Scikit-Learn, Keras)
- Be familiar with vector calculus and linear algebra or willing to learn it

Please self-assess **before** deciding to stay/enroll in the course

Student learning outcomes

After completing this course, you will be able to:

- Explain basic scientific and engineering approaches to computer vision
- Implement and test computer vision algorithms using existing software
- Build larger computer vision applications by integrating software modules
- Interpret and comment on articles in the computer vision literature

Course topics and lecturers

Week Topic

- 1 Introduction & Image Formation
- 2 Image Processing
- 3 Feature Representation
- 4 Image Segmentation
- 5 Pattern Recognition
- 6 Flexible Week (No Lectures)
- 7 Deep Learning
- 8 Motion and Tracking
- 9 Applications
- 10 Project Demos

Lecturer

Professor Erik Meijering Professor Erik Meijering Dr Dong Gong Professor Erik Meijering Dr Dong Gong

Dr Dong Gong Professor Erik Meijering Dr Tariq Khan, Dr Sonit Singh, Dr Lian Xu

Student Project Group Presentations and Q&A

Weekly class structure

- Lectures: Mondays 12-2pm & Fridays 1-2/3pm (live stream via BB Collab) Monday lectures will be on campus and online with an opportunity to ask questions
- Lab consultations: Fridays 2-3pm in weeks 2,4,5 (online via BB Collab) Software demos and lab consultations with your assigned tutor in weeks 2,4,5
- Project consultations: Fridays 2-3pm in weeks 6-9 (online via BB Collab)
 All project consultations will be online with your assigned tutor
- Project demos: Scheduled in lecture hours in week 10 (online via BB Collab)
 Detailed roster will be announced on the WebCMS3 page of the course

Assessments

Assessment	Marks	Release	Due
Assignment	10%	Week 2	Week 4
Lab Work (4x)	10%	Weeks 2, 3, 4, 5	Weeks 3, 4, 5, 7
Group Project	40%	Week 5	Week 10
Exam	40%	Exam Period	Exam Period

Late submission penalty: Unless you have received special dispensation from the Lecturer in Charge, work submitted after the deadline **during term** will incur a penalty of 5% per day, capped at 5 days, after which submissions are no longer accepted. *For the final examination, university exam rules apply.*

Communication modes and etiquette

- Online forum (Ed) is your first port of call for queries of wider interest on lectures, assignment, labs, project, and assessments
- **Contact the LIC** for late submission, absence, assessment deadlines, and specific questions about the assignment, labs, project, and assessment contents
- **Contact the course admin** for issues with enrolment, file submission, group enrolment, or other administration related matters
- Team is committed to respond quickly to queries with a maximum turnaround of 24 hours
- **Do observe standards of equity and respect** in dealing with all students and staff, in person, emails, forum posts, and all other communication
- Language of communication is English

Special Consideration

- If your work in this course is affected by unforeseen adverse circumstances, you should apply for Special Consideration via the UNSW website
- UNSW handles Special Consideration requests centrally, so use the website and do not email the Lecturer in Charge about Special Consideration requests
- Special Consideration requests must be accompanied by documentation
- Marks are calculated the same way as other students who sat the original assessment
- If you are awarded a Supplementary Exam and do not attend, your exam mark will be zero

See the course webpage on WebCMS3 for more detailed information and links

Plagiarism Policy

READ the UNSW Policy and Procedure on this (links in the course outline on WebCMS3)

For the purposes of COMP9517, plagiarism includes copying or obtaining all, or a substantial part, of the material for your assignment, whether written or graphical report material, or software code, **without written acknowledgement** in your assignment from:

- A location on the internet (including ChatGPT, GitHub Copilot, Google Bard etc.)
- A book, article or other written document (published or unpublished) in any form
- Another student, whether in your class or another class, at UNSW or elsewhere
- Someone else (for example someone who writes assignments for money)

Plagiarism Policy

- If you copy material from another student or non-student with acknowledgement, you will
 not be penalized for plagiarism, but the marks you get for this will be at the marker's
 discretion and will reflect the marker's perception of the amount of work you put into
 finding and/or adapting the code/text
- If you use text found in a publication (on the internet or elsewhere), the marks you get for this will be **at the marker's discretion** and will reflect the marker's perception of the amount of work you put into finding and/or adapting the text

Assessments provide opportunities for you to develop important skills Use these opportunities

Copyright Notice

- All course materials made available to you are copyrighted by UNSW
- Reproducing, publishing, posting, distributing, or translating is a copyright infringement
- Infringements will be reported to UNSW Student Conduct and Integrity for action

Further information on <u>WebCMS</u>

Please be sure you are familiar with:

- <u>Communication Etiquette</u>
- Special Consideration
- <u>Student Conduct</u>
- Plagiarism Policy
- <u>Academic Integrity</u>

Further reading on discussed topics

In the lectures we will be referring to various online resources for further reading:

- Richard Szeliski, Computer Vision: Algorithms and Applications, 2nd Edition, Springer, 2021
- Dana H. Ballard and Christopher M. Brown, <u>Computer Vision</u>, Prentice Hall, 1982
- Ian Goodfellow, Yoshua Bengio, Aaron Courville, <u>Deep Learning</u>, MIT Press, 2016
- David A. Forsyth and Jean Ponce, <u>Computer Vision: A Modern Approach</u>, Prentice Hall, 2011
- Simon J. D. Prince, <u>Computer Vision: Models, Learning and Inference</u>, CUP, 2012
- And other books, articles, and resources online or via the UNSW Library

Further reading on discussed topics

- Chapter 1 of Szeliski for a general introduction to computer vision
- Appendix A of Szeliski for a recap of linear algebra and numerical techniques

