
COMP9517: Computer Vision 

2023 T2 Lab 2 Specification 

Maximum Marks Achievable: 2.5 

This lab is worth 2.5% of the total course marks. 
 

 
Objective: This lab revisits important concepts covered in the lecture of Week 3 and aims to 
make you familiar with implementing specific algorithms. 
 
Materials: The sample images to be used in the tasks of this lab are available on WebCMS3. 
You are required to use OpenCV 3+ with Python 3+. 
 
Submission: The tasks are assessable after the lab. Submit your source code as a Jupyter 
notebook (.ipynb) which includes all output (see coding requirements below) by the above 
deadline. The submission link will be announced in due time. 
 

 
SIFT: Scale-Invariant Feature Transform 
A well-known algorithm in computer vision to detect and describe local features in images is 
the scale-invariant feature transform (SIFT). Its applications include object recognition, 
mapping and navigation, image stitching, 3D modelling, object tracking, and others.  
 
A SIFT feature of an image is a salient keypoint with an associated descriptor. SIFT computation 
is commonly divided into two steps: 
1) detection, 
2) description. 
 
At the end of the detection step, for each keypoint the SIFT algorithm computes the:  
• keypoint spatial coordinates (x, y), 
• keypoint scale (in the scale space), 
• keypoint dominant orientation. 
The subsequent description step computes a distinctive 128-dimensional feature vector for 
each keypoint. SIFT is designed in such a way that this descriptive feature vector is invariant 

The lab files should be submitted online.  

Instructions for submission will be posted closer to the deadline. 

Deadline for submission is Week 4, Friday 23 June 2023, 18:00:00. 



to scaling and rotation. Moreover, the algorithm offers decent robustness to noise, 
illumination gradients, and affine transformations. 
 
RANSAC: Random Sample Consensus Algorithm 
The random sample consensus (RANSAC) algorithm is an iterative approach to estimate the 
parameters of a mathematical model from a set of observed data that contains outliers, when 
outliers are to be accorded no influence on the values of the estimates. Therefore, it also can 
be seen as an outlier detection method. 
 
 
Task 1 (0.5 mark): Compute the SIFT features of the given image House.png. 
a) Extract SIFT features with default parameters and show the keypoints on the image. You 

are allowed to use existing library functions for this (see suggestions below). 
b) To achieve better visualization of the keypoints, reduce the number of keypoints. 

Hint: Vary the parameter contrastThreshold or nfeatures so that the number of keypoints 
becomes about 10% of all default keypoints. 

Show the result images obtained in a) and b) in your Jupyter notebook and include a brief 
description of the approach you used for b). 
 
Task 2 (0.5 mark): Recompute the SIFT features for a noisy version of House.png. 
a) Add pepper noise to the given image. Hint: The scikit-image library has a utility function to 

add random noise of various types to images. 
b) Extract the SIFT features and show the keypoints on the noisy image using the same 

parameter setting as for Task 1 (for the reduced number of keypoints). 
c) Inspect the keypoints visually: Are the keypoints of the noisy image roughly the same as 

those of the original image? What does this mean? 
Show the result images obtained in a) and b) in your Jupyter notebook and include your 
answers to the questions in c). 
 
Task 3 (1.5 mark): Match and stitch two given images Scene1.png and Scene2.png. 
a) Extract the SIFT features and show the keypoints on each image. Below, we show example 

results just to give you an idea of the sort of output we are looking for, but your results 
may look somewhat different depending on the specific implementation of the SIFT 
algorithm and the parameter settings used. As long as the calculations in a) and b) produce 
a good final result in c), the precise intermediate results are less important. 



 
 
b) Find the keypoint correspondences between the images and draw them. Hints: First, use 

OpenCV’s brute-force descriptor matcher (BFMatcher) to find matching keypoints. Then, 
use its kNN-based matching method (knnMatch) to extract the k nearest neighbours for 
each query keypoint. Use your own criteria based on the keypoint distances to select the 
best keypoint correspondences between the two images. 

 
 
c) Use the RANSAC algorithm to robustly estimate the mapping of one the two images to the 

other based on the selected best keypoint correspondences and then apply the mapping 
and show the final stitched image. Hints: There are existing OpenCV functions to find the 
mapping (findHomography) between sets of points using various methods, as well as 
functions to apply this mapping to sets of points (perspectiveTransform) and warp images 
accordingly (warpPerspective). You may need to crop the result to get a nicely stitched 
image. The red line drawn in the example below indicates the stitching boundary. 



 
 
 
Coding Requirements and Suggestions 
Check the OpenCV documentation for various built-in functions to find SIFT features, draw 
keypoints, and match keypoints in images, as well as apply RANSAC to estimate a mapping 
function. You should understand how the algorithms work, what parameters you can set in 
these built-in functions, and how these parameters affect the output. For your reference, 
below are links to relevant OpenCV functions. 
 

2D Features Framework 
https://docs.opencv.org/4.6.0/da/d9b/group__features2d.html 
 

Drawing Functions of Keypoints and Matches 
https://docs.opencv.org/4.6.0/d4/d5d/group__features2d__draw.html 
 

Descriptor Matchers 
https://docs.opencv.org/4.6.0/d8/d9b/group__features2d__match.html 
 

OpenCV SIFT Class Reference 
https://docs.opencv.org/4.6.0/d7/d60/classcv_1_1SIFT.html 
 

In your Jupyter notebook, the input images should be readable from the location specified as 
an argument, and all output images and other requested results should be shown in the 
notebook environment. All cells in your notebook should have been executed so that the 
tutor/marker does not have to execute the notebook again to see the results. 
 

Refer to the following page to understand image features and various feature detectors: 
https://docs.opencv.org/4.6.0/db/d27/tutorial_py_table_of_contents_feature2d.html 
 

Also, refer to the following example of computing SIFT features and showing the keypoints: 
https://docs.opencv.org/4.6.0/da/df5/tutorial_py_sift_intro.html 

https://docs.opencv.org/4.6.0/da/d9b/group__features2d.html
https://docs.opencv.org/4.6.0/d4/d5d/group__features2d__draw.html
https://docs.opencv.org/4.6.0/d8/d9b/group__features2d__match.html
https://docs.opencv.org/4.6.0/d7/d60/classcv_1_1SIFT.html
https://docs.opencv.org/4.6.0/db/d27/tutorial_py_table_of_contents_feature2d.html
https://docs.opencv.org/4.6.0/da/df5/tutorial_py_sift_intro.html


 

And finally see this page for an example of feature matching: 
https://docs.opencv.org/4.6.0/dc/dc3/tutorial_py_matcher.html 
 

 
Reference: D. G. Lowe. Distinctive image features from scale-invariant keypoints. 
International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, November 2004. 
https://doi.org/10.1023/B:VISI.0000029664.99615.94 
 

 
Copyright: UNSW CSE COMP9517 Team. Reproducing, publishing, posting, distributing, or 
translating this lab assignment is an infringement of copyright and will be referred to UNSW 
Student Conduct and Integrity for action. 
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