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General Road Detection From a Single Image
Hui Kong, Member, IEEE, Jean-Yves Audibert, and Jean Ponce, Fellow, IEEE

Abstract—Given a single image of an arbitrary road, that may
not be well-paved, or have clearly delineated edges, or some
a priori known color or texture distribution, is it possible for a
computer to find this road? This paper addresses this question by
decomposing the road detection process into two steps: the estima-
tion of the vanishing point associated with the main (straight) part
of the road, followed by the segmentation of the corresponding
road area based upon the detected vanishing point. The main
technical contributions of the proposed approach are a novel
adaptive soft voting scheme based upon a local voting region using
high-confidence voters, whose texture orientations are computed
using Gabor filters, and a new vanishing-point-constrained edge
detection technique for detecting road boundaries. The proposed
method has been implemented, and experiments with 1003 gen-
eral road images demonstrate that it is effective at detecting road
regions in challenging conditions.

Index Terms—Dominant edge detection, road detection, soft
voting, vanishing point detection.

I. INTRODUCTION

N UMEROUS image-based road detection algorithms have
emerged as one of the components of fully automatic ve-

hicle navigation systems [1]. Most of the early systems focused
on following the well-paved road that is readily separated from
its surroundings. More recently, triggered by the DARPA Grand
Challenge [2], a competition between autonomous offroad vehi-
cles, many algorithms have attempted to handle offroad condi-
tions. Although significant advances have been made on special-
ized systems for detecting individual road types, little progress
has been made in proposing a general algorithm to detect a va-
riety of types of roads.

Given a road image as shown in Fig. 1, can the computer
roughly determine where the road is? This paper answers this
question by proposing a novel framework for segmenting the
road area based upon the estimation of the vanishing point as-
sociated with the main (straight) part of the road. The novelties
of this paper lie in the following aspects: 1) In the estimation
of texture orientation, we not only compute the texture orienta-
tion at each pixel, but also give a confidence to each estima-
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Fig. 1. Different types of roads with varying colors, textures and lighting.

tion. The introduced confidence is then incorporated into the
vanishing point estimation. 2) Observing that the higher image
pixels tend to receive more votes than lower image pixels, which
usually results in wrong vanishing point estimation for the road
images where the true vanishing point of the road is not in the
upper part of the image, a locally adaptive soft-voting (LASV)
scheme is proposed to overcome this problem. The scheme uses
a local voting region, in which pixels having low confidence tex-
ture orientation estimation are discarded. This vanishing point
estimation method is quite efficient because only the selected
pixels in the local voting region are used as voters. 3) To seg-
ment the road area, a vanishing-point constrained group of dom-
inant edges are detected based upon an orientation consistency
ratio (OCR) feature, and two most dominant edges are selected
as the road borders by combining color cue. This road detection
method integrates texture orientation and color information of
the road, and it handles well changes of illumination and applies
to general road images. In the preliminary version of this paper
[3], we only use the OCR feature and a clustering method for
road segmentation. We show through empirical results that the
road segmentation accuracy is improved by combining the OCR
and color features.

II. RELATED WORK

Generally, a road image can be classified into a structured
(e.g., a road in unburn area) or unstructured one (e.g., a road in
rural area). For structured roads, the localization of road borders
or road markings is one of the most commonly used approach.
Color cue [4]–[6], Hough transform [7], [8], steerable filters
[9], [10], and Spline model [11]–[13] etc. have been utilized
to find the road boundaries or markings. The drawbacks of
these methods is that they only consistently work for structured
roads which have noticeable markings or borders. Methods
based upon segmenting the road using the color cue have also
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been proposed, but they do not work well for general road
image, specially when the roads have little difference in colors
between their surface and the environment. In addition, laser
[14], radar [15] and stereovision [16] have also been used for
structured-road detection.

For unstructured roads or structured roads without remark-
able boundaries and markings, Alon et al. [17] have combined
the Adaboost-based region segmentation and the boundary de-
tection constrained by geometric projection to find the “driv-
able” road area. However, it needs many different types of road
images to train a region classifier, which might be onerous. Re-
verse optical flow technique [18] provides an adaptive segmen-
tation of the road area, but the method does not work well on
chaotic roads when the camera is unstable and the estimation
of the optical flow is not robust enough. Stereo cameras [19],
[20] are also used to determine terrain traversability. When there
is little difference in color between the road and offroad areas,
it is hard to find strong intensity change to delimit them. The
one characteristic that seems to define the road in such situa-
tions is texture. The associated approaches [21]–[23] have at-
tempted to define the forward “drivable” image region by uti-
lizing the texture cue. They compute the texture orientation for
each pixel, then seek the vanishing point of the road by a voting
scheme, and finally localize the road boundary using the color
cue. Our approach belongs to this line of research. Although
multiple-sensor method [24] can handle unstructured road case,
it is beyond the scope of this paper which only uses visual
information.

The rest of this paper is organized as follows: a texture ori-
entation estimation at each pixel for which a confidence level
is provided (Section III), a voting scheme taking into account
this confidence level and the distance from the voting pixel to
the vanishing point candidate (Section IV), and a new vanishing-
point constrained dominant edge detection technique for finding
the boundaries of the road (Section V).

III. CONFIDENCE-RATED TEXTURE ORIENTATION ESTIMATION

Our texture orientation estimation relies on Gabor filters since
they are known to be accurate (see [22, Sec. 2.1]). The kernels
of the Gabor filters are similar to the 2-D receptive field profiles
of the mammalian cortical simple cells and exhibit desirable
characteristics of spatial locality and orientation selectivity. For
an orientation and a scale (radial frequency) , the Gabor
wavelets (kernels,filters) are defined by [25]

where , and
([25, octave 1.7]). We consider 5 scales ( , ,

, 1, 2, 3, 4) on a geometric grid and 36 orientations (180
divided by 5). These parameters are similar to the ones in [22].
Fig. 2 shows the real and imaginary parts of the Gabor kernels.

Let be the gray level value of an image at . The
convolution of image and a Gabor kernel of scale and ori-
entation is defined as follows:

(1)

Fig. 2. Gabor kernels with 5 scales and 36 orientations: real part kernels (rows
1 to 5) and imaginary part kernels (rows 6 to 10).

Fig. 3. Left: Four points on which the Gabor complex responses are evaluated.
Right: The Gabor complex responses for the four points.

The convolution result at pixel has two
components, a real part and an imaginary part. To best charac-
terize the local texture properties, we compute the square norm
of this “complex response” of the Gabor filter for each 36 evenly
spaced Gabor filter orientations

The response image for an orientation is then defined as the
average of the responses at the different scales (see Fig. 3)

The texture orientation is chosen as the filter orientation
which gives the maximum average complex response at that lo-
cation (the average is taken over the 5 scales)

The second row of Fig. 4 shows the images overlaid with sub-
sampled texture orientations estimated using Gabor filters.

From the convolution theorem applied to (1), we have

hence

where and denote the Fourier and inverse Fourier trans-
form, respectively. The use of the fast Fourier transform
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Fig. 4. First row: four road sample images. Second row: images overlaid with
texture orientations estimated using Gabor filters. Third row: examples of the
confidence map for the texture orientation estimation. The brighter the pixel, the
higher confidence the orientation estimation. Fourth row: pixels with confidence
larger than 0.3.

with and allows
fast computation of the response image.

Although the previously mentioned solution for texture orien-
tation estimation has been used by some previous researchers,
the estimated texture orientation in this way is not guaranteed
to be correct. To provide a confidence level to the texture orien-
tation at pixel , we seek to a way which evaluates how
peaky the function is near the optimum angle

. Let be the ordered values of the
Gabor response for the 36 considered orientations (in particular,

). If the global maximum response is signif-
icantly different from the other local maximum responses, the
texture orientation estimation is reliable, otherwise, it is not. We
have found that the local maximum responses usually fall be-
tween and ( , and correspond to similar angles
to the optimal one). Therefore, we choose the average of the
responses from to as the mean of the local maximum re-
sponses. The confidence in the orientation is given by

We normalize Conf throughout the image to the range of 0 to 1.
In our experiments, we discard the pixels having a confidence
score smaller than , and consider the remaining pixels as the
“voting” pixels. can be seen as a threshold put on the normal-
ized confidence score. The optimal is obtained by tuning on
our test image set, where results in highest vanishing
point detection accuracy.

We did not directly use the magnitude of the response of the
Gabor filter, since it leads to worse results than the proposed
method according to our tests. These negative results are mostly
due to high magnitudes of the response in parts of the image that
are not related to the road and low magnitudes of the Gabor re-
sponse in the road area, which often happens with unstructured
roads and bright sky.

Fig. 5. Illustration of the problem in vanishing point estimation by conven-
tional voting strategy. ��, ��, �� and �� are four possible voters. � � and
� � are two vanishing point candidates (assuming that � � is the true vanishing
point). �� , �� , �� and �� are respectively the texture orientation vectors of
the four voters. The two vanishing point candidates divide the whole image re-
gion into three zones, denoted as ��, �� and ��. �� does not vote for both
candidates. Both �� and �� potentially vote for � � while � � receives votes
only from ��. Therefore, the higher vanishing point candidates tend to receive
more votes than the lower candidates.

Fig. 6. Left: Global � . Right: local � . The blue belt in the images is the
border pixels excluded from voting owing to the Gabor kernel size.

IV. LOCALLY ADAPTIVE SOFT-VOTING

After having computed the texture orientation at each pixel
of the image, one can make these pixels vote to obtain the van-
ishing point. Precisely, a pixel for which the texture orien-
tation is the vector can vote for all pixels above (we
consider images in which the road is below the sky) such that
the angle between the direction and the
vector is below some fixed threshold . This “hard-voting”
strategy has been used in [22]. In our experiments, we notice
that this scheme tends to favor points that are high in the image,
leading sometimes to large errors in the estimation of the van-
ishing point. A typical image for which this defect appears is
given in Fig. 5.

To deal with this problem, we propose a soft-voting scheme
where the voting score received by a vanishing point candidate
from a voter is a value taking into account the distance between
the vanishing point candidate and the voter. We treat as a can-
didate vanishing point each pixel in the top 90% portion of the
whole image (although we might only consider fewer by sub-
sampling the image), which, to our knowledge, is a realistic
assumption for general road images. For each point of the
image, we define a voting region as the intersection of the
Gabor response image with a half-disk below centered at
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Fig. 7. Illustration of detection of the two most dominant edges. Top row: (1) line segments consisting of discrete oriented points. (2) Some sample rays originating
from the initially detected vanishing point ���. (3) Illustration of computing the sum of the OCRs of each ray and its two direct neighbors. (4) Illustration of
computing the color difference between each ray’s two neighboring regions, �� and ��. Bottom row: (1) The first most dominant border (red line), updated
vanishing point ��� and the � rays (green lines) which have the largest � . (2), (3) and (4) Among the green lines, the second road border is selected as the one
which maximizes (3).

TABLE I
LOCALLY ADAPTIVE SOFT-VOTING (LASV) SCHEME

(see Fig. 6). The radius of this half-disk is set to be 0.35 ,
where is the length of the image diagonal (see our empirical
validation part).

Each pixel inside , for which the texture orientation
has been confidently estimated (see end of Section III), will vote
for the candidate vanishing point all the more as is close to

and the orientation of its texture coincides with the direction
. Specifically, we introduce the ratio equal to the

distance between and divided by the diagonal length of
the image, and let be the angle in degrees
between the direction and the texture orientation at .

if
otherwise.

(2)

It is worth noting that itself is independent of . How-
ever, the threshold of depends upon so that points
that are far away (but still within ) are taken into account
only if the angle is very small (typically less than 3 ), while
points closer to will be taken into account up to .
For example, if , votes for only when
is smaller than (approximately 3 ). In contrast, if

=0.03, P votes for V when is smaller than
(approximately 5 ). In this way, ’s threshold can also

be viewed as a penalty coefficient that penalizes the vanishing

TABLE II
VANISHING POINT CONSTRAINED ROAD BORDER DETECTION

point candidates in the top end of the image who has an ad-
vantage of receiving more votes than the lower vanishing point
candidates. In addition, this also allows to improve the compu-
tational efficiency. At the end, the vanishing point is detected as
the candidate that receives the largest voting score. The LASV
process is briefly described in Table I.

The advantages of the proposed LASV method over the con-
ventional global hard-voting method lie in three-fold when the
true vanishing point does not lie at the very top end of the image.
First, the soft-voting strategy suppresses the support to the false
vanishing point (i.e., those vanishing point candidates above the
true vanishing point) by making the voting score far less than
one (unless is very small). For example, it reduces the sup-
port received by from those voters in and in Fig. 5.
Second, it increases the ratio of the support received by the true
vanishing point to that received by the higher false vanishing
point, e.g., the support to is larger than that to if
votes for both and , while the support to and is
equal when using hard-voting method even if votes for both
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Fig. 8. Effect of � , the threshold set on the confidence of texture orientation
estimation, on the vanishing point detection accuracy.

and . To discard pixels far away from the vanishing point
candidate, or with low confidence in the texture orientation esti-
mation, or with not small enough results in a significant com-
putational speed-up. Our empirical results show that LASV is
more than five times faster than the slow version of the global
hard-voting method [22].

V. ROAD SEGMENTATION

The correctly detected vanishing point provides a strong clue
to the localization of the road region. Therefore, we propose a
vanishing-point constrained dominant edge detection method to
find the two most dominant edges of the road. Based upon the
two dominant edges, we can roughly segment the road area and
update the vanishing point estimated by LASV with the joint
point of the two most dominant edges.

In [23], a similar straight road segmentation method is given
to detect both road borders simultaneously. It is achieved by op-
timizing a criterion, which is the difference between the average
values of some characteristic (e.g., R,G,B color cues) within the
image road region and that characteristic in the region outside
the road. It may work when the road and offroad regions have
different characteristics. However, it usually fails for both cases
where there is little difference in color between road and offroad
regions, and where the color is not homogeneous in road region.

We also need to point out the distinction between the road
support region segmentation method proposed in [26] and ours.
The main difference is that they obtain the middle line of the
road by using the imaginary “road support ray.” This technique
is well adapted to desert (unpaved) roads where there usually is
a clear trace left by previous vehicles and these rays exhibit a
even distribution. However, it may not work as well on paved
roads whose texture is usually sparser, and, therefore, finding
the middle line may prove more difficult than road borders. In
contrast, our method finds the road boarders by optimizing a
criterion, which is a combination of a predefined feature, called
OCR, and a measure related to color cue.

The proposed road segmentation strategy is to find the two
most dominant edges by initially locating the first one and the
other based upon the first one. Because we utilize both texture
and color cues, the proposed method exhibits good merits in
handling very general road detection tasks, e.g., for some un-
paved roads where there is very subtle or no change in colors be-

Fig. 9. Effect of the radius of the local voting region on the vanishing point de-
tection accuracy (note that the detected vanishing point is deemed to be correct
if the error between the detected vanishing point position and the ground truth
one is no larger than 10 pixels).

tween the road and its surrounding areas (road covered by snow
or desert road), or for some roads where color in road region
is not homogeneous (road after rain), or for well-paved roads
where painted markings are present.

The definition of OCR is given in the top left image of Fig. 7:
is a line consisting of a set of discrete oriented points/pixels

(the orientation of these points denoted by a black arrow in the
figure). For each point, if the angle between the point’s orienta-
tion and the line’s direction is smaller than a threshold, this point
is viewed to be orientationally consistent with the line. OCR is
defined as the ratio between the number of orientationally con-
sistent points and the number of total points on the line.

We find that the initially estimated vanishing point co-
incides with the joint point of a few dominant edges of the road
if this vanishing point is a correct estimation, while it usually
falls on the extension of one of the most dominant boundaries
if it is a wrong estimation. Therefore, we propose to use the ini-
tial vanishing point estimation as a constraint to find the first
most dominant road boundary. Specifically, we will search this
boundary from a set of imaginary rays which originate from the
initially estimated vanishing point. We only consider 29 evenly
distributed rays (excluding those rays whose angle relative to
horizon is smaller than 20 or larger than 160 ) with the angle
between two neighboring of them being 5 . The second image
in the top row of Fig. 7 shows some of these imaginary rays,
with each of them consisting of a set of oriented points whose
orientations have been estimated by Gabor filters. Two measures
are computed: the sum of the OCRs of each ray and its two di-
rect neighbors (illustrated in the third image of the top row of
Fig. 7), and the color difference between the two neighboring
regions of each ray (illustrated as the color difference of and

in the fourth image of the top row of Fig. 7). Accordingly, the
first most dominant boundary is selected as the ray which max-
imizes the product of the previously mentioned two measures

(3)

where and is the two direct neighboring regions on ei-
ther side of the th ray, and is the color differ-
ence of and . Specifically, is defined as the
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Fig. 10. Comparison of vanishing point estimation based upon different com-
binations: (a) “Hard”�“Global;” (b) “Soft”�“Global;” (c) “Soft”�”Global”
�� � ����; (d) “Hard”�“Local;” (e) “Soft”�“Local;” (f) “Soft”�“Local”
�� � ����.

largest of the color difference for each channel,
1, and is given

by

(4)

where and are the mean and variance of pixel
values in a region for a single color channel.

Note that the area of and is controlled by their wedge
angle respectively, which is set to be 20 in our experiment. The
red line, , in the bottom left image of Fig. 7, is detected as
the first most dominant edge and its length is denoted as .
To avoid possible false detection caused by short edges, the
smallest is set to be one third of the height of image.

Once the first border of the road is found, we will update the
initial vanishing point by looking at the points on where sev-
eral dominant edges converge according to the OCR. For this,
through each (regularly) sampled pixel on , we construct a

1The main purpose of including colors in this section is to show that color
information helps to boost road segmentation accuracy (compared with our pre-
liminary results by vanishing point [3]). Although we choose RGB as exemplar
colors, the use of the other colors, e.g., HSV, might also achieve equivalent or
even better performance.

Fig. 11. Comparison of vanishing point estimation accuracy: (a) At a certain
error distance, the number of images whose road vanishing point detection is
viewed to be correct. (b) The percentage of images whose vanishing point de-
tection error is smaller than a threshold.

set of line segments such that the angle between any two
neighboring lines of is fixed ( in our experiments). We
also set the angle between and any one of is larger than 20
(motivated by the assumption that the vanishing angle between
the two road borders is generally larger than 20 ). We compute
the OCR for each line of (we count the number of lines whose
OCR is larger than 0.02 and denote this number by ), and for
each new vanishing point candidate , we consider the sum
of the top OCR in our experiments). The
green line segments in Fig. 7 are the lines starting from
receiving the top OCR. The new vanishing point is then esti-
mated as the point maximizing . We try other points along

besides the initial vanishing point since the initial vanishing
point estimation may not be accurate (i.e., it is not the joint point
of the most dominant edges of the roads). Some of the updated
vanishing points can be observed in Fig. 12.

From the updated vanishing point and more precisely from
the dominant edges which have voted for it, we deduce the
position of the second border of the road in a similar way as
explained for the first road border detection. The length of the
obtained second most dominant edge is denoted and the
length of the first dominant edge is updated to (see Fig. 7).
The smallest and the smallest are set to be one
third of the image height to avoid possible false detections. The
process to detect the road borders is summarized in Table II.
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Fig. 12. Vanishing point detection and road segmentation. (a) sample images from Mojave desert and (b) sample images downloaded from Google image. For
(a) and (b), the first rows show the voting images based upon “Local”�“Soft” scheme. The second rows are the initially detected vanishing points based upon the
voting images. The third rows show the detected dominant road edges based upon the OCR and color features (note that the detected red dominant edges correspond
to the first most dominant road borders). The fourth rows are the segmented road regions based upon the two detected road borders. The fifth rows display the
updated vanishing points. The sixth rows are the ground-truth road segmentation.

VI. EXPERIMENTAL RESULTS

A. Vanishing Point Estimation

Vanishing point estimation is tested on 1003 general road
images. These road images exhibit large variations in color,
texture, illumination and ambient environment. Among them,
about 430 images are from the photographs taken on a scouting
trip along a possible Grand Challenge route in the Southern
California desert and the other part is downloaded from in-
ternet by Google Image. Some image samples are shown in
Fig. 1. All images are normalized to the same size with height
of 180 and width of 240. To assess the algorithm’s performance
versus human perception of the vanishing point location, we re-
quest five persons to manually mark the vanishing point loca-
tion after they are trained to know the vanishing point concept.

To remove the effect brought by the subjectivity of each indi-
vidual in marking vanishing point, a median filter is applied
to these human recorded results (for x and y coordinates, re-
spectively) and the median is used as the initial ground-true po-
sition. The two farthest manually marked locations to the ini-
tial ground-true position are removed as outliers. Finally, the
ground-truth location is computed as the mean of the other
three locations.

For brevity, the soft voting strategy defined in (2) is de-
noted by “Soft” and the hard voting strategy (by replacing

with 1 in (2))is denoted as “Hard.” The
voting strategy based upon global voting region (left image of
Fig. 6) is denoted by “Global” and the one based upon local
voting region (right image of Fig. 6) is denoted by “Local.”
We compare the “Hard” versus “Soft” and “Global” versus
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Fig. 13. Examples of failed detections under extreme illumination conditions, or when the vehicle is going up or down the mountain, or making a turn.

“Local” schemes. We also compare different combination of
them with/without introducing the confidence factor.

Before comparing these combination schemes, we first intro-
duce how the threshold , which is set to the confidence of
texture orientation estimation, affects the vanishing point detec-
tion accuracy. Using the “Soft” “Local” strategy (the radius of
the local region set to 0.35 ), we tune from 0 to 1 with an
interval of 0.1, and the result is shown in Fig. 8. Note that the
detected vanishing point is deemed to be correct if the error be-
tween the detected vanishing point position and the ground truth
one is no larger than 10 pixels. The optimal vanishing point de-
tection result is obtained when is set to be 0.3. Similarly, the
size of the local voting region also plays a role in detecting van-
ishing point. In Fig. 9, the vanishing point detection accuracy
is obtained based upon the “Soft” “Local” strategy where the
radius of local voting region is tuned from 0 to and only the
image pixels whose texture orientation estimation confidence
is larger than 0.3 are used for voting. From Fig. 9, we obtain
the best vanishing point detection results when the radius of the
local voting region is about 0.35 , and this size is fixed in all
the subsequent experiments which are based upon local voting
region.

Fig. 10 visually gives us the comparison of vanishing point
estimation on some sample images. The estimation using the
“Hard” and “Soft” voting based upon global are shown
in Fig. 10(a) and (b) respectively, while some results using
“Hard” and “Soft” voting based upon local are shown in
Fig. 10(d) and (e) respectively. Fig. 10(c) and (f) shows some
samples voted from those image pixels whose confidence score
is larger than 0.3. By comparing (a) with (b) and comparing (d)
with (e), it can be observed that “Soft” voting scheme is better
than “Hard” voting scheme. By comparing (a) with (d) and
comparing (b) with (e), we find that local voting region scheme
is more accurate than global voting region one. The examples
based upon the “Soft” voting from those highly confident
texture orientations in the global are shown in row (c),
and the estimations based upon LASV are shown in row (f).

Comparing (c) with (a) and (b), and comparing (f) with (d) and
(e), we find that it does improve the vanishing point estimation
accuracy by introducing the confidence measure.

Fig. 11 lists some statistics of the previously men-
tioned different combinations. Based upon the ground
truth positions, we compute the norm distance, i.e.,

, where is the
detection position and is the ground truth position,
of the results produced by the previously mentioned different
combinations to the ground truth positions, and put these dis-
tances into a 15-bin histogram. The horizontal axis of Fig. 11
represent the .

If the distance is larger than or equal to 15, it is put into the
15th bin of the histogram. The seven histograms are shown in
(a) of Fig. 11. From Fig. 11(a), we may find that the vanishing
point estimation from the pixels with high confidence is much
better than the estimation without considering the confidence
factor. Local voting-region based method produces more ac-
curate estimation than the corresponding global voting-region
based method. Based upon these histograms, we also compute
the percentage of the images whose error distance is smaller
than a number. The best results come from the “Soft” voting
based upon the high-confidence image pixels of the local
(confidence value is larger than 0.3) plus updating by the joint
point of the two most dominant edges. About 96% of all images
have an error distance no bigger than 10 pixels. The method de-
scribed in [22] belongs to the “Global” “Hard” scheme. Based
upon our experiment, our algorithms perform much better: ap-
plying the “Global” “Hard” scheme to our data, totally 112 im-
ages produce an error of more than 50 pixels, where 87 of them
have very low ground-truth vanishing points. In contrast, such
a large error occurs in only 33 images for the weakest variant
(Global Soft) of our method. On average, on our test data, our
method gives a 9-pixel instead of 14-pixel error for the method
in [22]. Note that, for curved road, the vanishing point produced
by our method is located at the joint point of the most immediate
straight road borders.
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Fig. 14. Illustration of the “recall” concept: the ground truth road segmentation is represented by the gray area in the first image, and the light purple areas in the
other images represent the detected road regions. Except for the third image, the “recall” for the other images is smaller than “1.”

B. Dominant Edge Detection and Road Segmentation

Among the 1003 images, about 300 images are from well
paved roads with painted markers. Excluding the 430 desert im-
ages, the rest images corresponding to the rural roads have no
painted lines although part of them are also well paved. For over
90% of the rural roads, the two road borders are detected as the
two most dominant edges. For the desert images, the road can
be correctly detected as long as the vanishing point estimation
is close to the true position. For curved roads, the detected road
region is the most immediately drivable area although part of the
road surface cannot be fully encompassed by the two dominant
edges.

Fig. 12(a) corresponds to the desert road images and
Fig. 12(b) comes from the downloaded images. Note that some
initially detected vanishing point locations are improved by the
two dominant edges. The initial vanishing points by LASV are
shown in the second rows respectively. The detected dominant
edge candidates are shown in the third rows respectively, where
the red lines are the first detected road borders. The two most
dominant edges are detected and shown in the fourth rows
respectively. The updated vanishing points by dominant edges
are shown in the fifth rows. By checking the vanishing point
detection results, we find that some failed cases are caused by
extreme illumination conditions (e.g., intensity saturation or
strong edge of shadow casted by trees, like the images shown
in the seventh and eighth columns of Fig. 13). The vanishing
point detection tends to fail when the vehicle goes up or down
the mountain and there is no enough supporting voting region
for the vanishing point (the fifth column of Fig. 13). But if there
is enough supporting voting region, the vanishing point can be
correctly detected even when the vehicle is not running on the
flat road (the sixth column of Fig. 13). Similarly, the vanishing
point detection is accurate during turning the vehicle if there
is a large supporting voting region available in the image (the
first and third columns of Fig. 13), and vice versa (the second,
fourth and last column of Fig. 13. To deal with the previously
mentioned failed situations, we might have to seek the other
ways instead of only relying on vanishing point detection
for road detection. The alternative solution might be the road
tracking strategy based upon the detected road appearance by
our method in previous frames.

To quantitatively show the road segmentation accuracy, we
manually labelled the 1003 road images. Some of the labelled
road images are shown in the last rows of Fig. 12(a) and (b). Let

and denote the binarized ground-truth and detected road
regions of one image respectively, the “recall” is computed as

(5)

Fig. 15. Road segmentation accuracy: combination of texture and color fea-
tures improves the accuracy over texture-feature based method.

where the road regions in and are set to be “1” and the
offroad regions are set to be “0.” Based upon this definition,
we may find that the “recall” reaches its maximum value, “1,”
only when the detected road region coincides with the ground
truth one. Fig. 14 illustrates the concept of “recall,” where the
ground truth road segmentation is represented by the gray area
in the first image, and the light purple areas in the other images
represent the detected road regions. Except for the third image,
the “recall” for the other images is smaller than “1.”

We change the recall rate from 0 to 1 and calculate the statis-
tics of how many road images are correctly segmented, which
is displayed in Fig. 15, where the “recall” is represented in per-
centage as the horizontal axis. We compare the road segmenta-
tion method proposed in this paper with the one in [3]. Because
we combine texture (OCR) and color features for road segmen-
tation in this paper, we can observe a large improvement over
[3] where only a clustering method based upon OCR features is
used.

Our method is efficient and can be run in real time. This is at-
tributed to the sparse number of voters in the local voting region
during the vanishing point detection, and the efficient dominant
edge detection (the most heavy computation being in the calcu-
lation of the OCR for each constructed edge). We run our im-
plementation under Windows OS with a CPU of 1.8 GHZ and
1 G memory, it takes about 62 s for our 1003 240 180 im-
ages (i.e., about 17 frames per second). In addition, there is still
much room in improving the efficiency. For example, the run-
ning speed can be significantly improved by subsampling the
vanishing point candidates (e.g., with a even step of 2 pixels),
since, in the current version, we consider every pixel as a van-
ishing point candidate in the top 90% portion of image. For the
memory space requirement, our method is economic where the
largest memory usage is less than 9 M (in texture orientation
computation by Gabor filters).
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VII. CONCLUSION

A novel framework for segmenting the general road region
from one single image is proposed based upon the road van-
ishing point estimation using a novel scheme, called Locally
Adaptive Soft-Voting (LASV) algorithm. Then the estimated
vanishing point is used as a constraint to detect two dominant
edges for segmenting the road area. To remove the effect caused
by noisy pixels, each Gabor texture orientation is estimated with
a confidence score. In voting, only the pixels of a local voting
region whose confidence is high are used, which reduces the
computational complexity and improves the accuracy.
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