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Abstract—This paper presents a novel approach for hand
matching that achieves significantly improved performance even
in the presence of large hand pose variations. The proposed
method utilizes a 3-D digitizer to simultaneously acquire intensity
and range images of the user’s hand presented to the system in an
arbitrary pose. The approach involves determination of the orien-
tation of the hand in 3-D space followed by pose normalization of
the acquired 3-D and 2-D hand images. Multimodal (2-D as well
as 3-D) palmprint and hand geometry features, which are simul-
taneously extracted from the user’s pose normalized textured 3-D
hand, are used for matching. Individual matching scores are then
combined using a new dynamic fusion strategy. Our experimental
results on the database of 114 subjects with significant pose varia-
tions yielded encouraging results. Consistent (across various hand
features considered) performance improvement achieved with
the pose correction demonstrates the usefulness of the proposed
approach for hand based biometric systems with unconstrained
and contact-free imaging. The experimental results also suggest
that the dynamic fusion approach employed in this work helps to
achieve performance improvement of 60% (in terms of EER) over
the case when matching scores are combined using the weighted
sum rule.

Index Terms—Contactless palmprint, dynamic Fusion, hand
biometrics, 3-D Palmprint, 3-D hand geometry, SurfaceCodes.

I. INTRODUCTION

AND based biometric systems, especially hand/finger

geometry based verification systems are amongst the
highest in terms of user acceptability for biometric traits. This
is evident from their widespread commercial deployments
around the world. Despite the commercial success, several
issues remain to be addressed in order to make these systems
more user-friendly. Major problems include, inconvenience
caused by the constrained imaging set up, especially to elderly
and people suffering from limited dexterity [16], and hygienic
concerns among users due to the placement of the hand on
the imaging platform. Moreover, shape features (hand/finger
geometry or silhouette) extracted from the hand carry limited
discriminatory information and, therefore, are not known to be
highly distinctive.
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Over the years, researchers have proposed various approaches
to address these problems. Several research systems have been
developed to simultaneously acquire and combine hand shape
and palmprint features and thereby achieving significant perfor-
mance improvement. Furthermore, a lot of researchers have fo-
cused on eliminating the use of pegs used for guiding the place-
ment of the hand. Recent advances in hand biometrics litera-
ture is towards developing systems that acquire hand images in a
contact free manner. Essentially, hand identification approaches
available in the literature can be classified in to three categories
based upon the nature of image acquisition.

1) Constrained and contact based: These systems employ
pegs or pins to constrain the position and posture of hand.
Majority of commercial systems and early research sys-
tems [1], [2] fall under this category.

2) Unconstrained and contact based: Hand images are ac-
quired in an unconstrained manner, often requiring the
users to place their hand on flat surface [7], [12] or a digital
scanner [5], [6].

3) Unconstrained and contact-free: This approach does away
with the need for any pegs or platform during hand image
acquisition. This mode of image acquisition is believed to
be more user-friendly and have recently received increased
attention from biometric researchers [3], [11], [12], [15].

Over the recent years, a few researchers have developed
hand based biometric systems that acquire images in an un-
constrained and contract free manner [3], [11], [13], [15].
However, none of these approaches explicitly perform 3-D
pose normalization nor do they extract any pose invariant fea-
tures. In other words, these approaches assume that the user’s
hand is being held parallel to the image plane of the camera
during image acquisition, which may not always be the case,
especially with such unconstrained imaging set up. Therefore,
these approaches may face serious challenges when used for
real world applications.

Zheng et al. [8] proposed a hand identification approach
based upon extracting distinctive features that are invariant to
projective transformations. Authors have achieved promising
results on a rather small database of 23 subjects. However, the
performance of their approach heavily relies on the accuracy of
feature point detection on the hand images, which can deterio-
rate especially under large pose variations. Another drawback
of their approach is that authors have not been able to utilize the
palmprint information available in the acquired hand images
and, therefore, the lack such highly discriminatory information
may pose limitations on the scalability of their approach. The
work presented in [12] is based upon the alignment of a pair
of intensity images of the hand using the homographic trans-
formation between them. Two out of four corresponding points
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Fig. 1. Block diagram of the hand pose normalization approach.

required for the estimation of homographic transformation
matrix are located on the edge map of the palmprint region.
However, it should be noted that the palmprint region on the
human hand lacks well defined features points and, therefore,
it may not be possible to robustly estimate the homographic
transformation. Moreover, even the more stable points, i.e.,
interfinger points used for estimating the homographic trans-
formation cannot not always be accurately located, especially
under hand large pose variations, as we show later in this paper.

As one can find in the literature, the problem of 3-D pose

variation has been well addressed in the context of 3-D face
[18] and 3-D ear [20] recognition. However, little work has been
done in this area for 3-D hand identification, despite it being
one of the highly acceptable biometric traits. The approaches
proposed for 3-D face or ear recognition cannot be adopted di-
rectly as the hand identification poses its own challenges such as
lack of well defined landmark points. The approaches proposed
for hand pose normalization in the context of gesture recogni-
tion [23] provides only a rough estimate of the orientation of the
hand. Biometric identification, on the other hand, requires accu-
rate estimation of hand pose, since an error at the stage of align-
ment/registration of regions of interest would propagate and se-
verely affect the matching performance of the system. This has
motivated us to explore this area and develop an approach for
pose invariant hand identification using textured 3-D hands ac-
quired in an unconstrained and contact-free manner. The key
contributions of our paper can be summarized as follows.

1) A fully automatic hand identification approach that can re-
liably authenticate individuals even in the presence of sig-
nificant hand pose variations (in 3-D space) is presented.
We utilize the acquired 3-D hand data to automatically es-
timate its pose based upon a single detected point on the
palm. The estimated 3-D orientation information is then
used to correct the pose of both the 3-D and its corre-
sponding intensity image of the hand. The major advan-
tage of using 3-D hand data is that the pose of the hand can
be robustly estimated using only a single point (approxi-
mate palm center), unlike the existing approaches for 2-D
hand identification [8], [12] that require detection of mul-
tiple landmark points on the hand.

2) Another major contribution of this paper is the proposed
dynamic fusion strategy to selectively combine palmprint
and hand geometry features extracted from the pose cor-
rected 3-D and 2-D hand. The motivation behind such an
approach emerges from our key finding (with the pose cor-

Fig. 2. Localization of circular palmar region using interfmger valley points.

rected hand data) that there is significant loss of hand/finger
geometry information whenever the degree of rotation of
the hand is considerably high. Therefore, in such cases it
is judicious to ignore hand geometry information and rely
only on the palmprint match scores to make a more effec-
tive decision.

The rest of this paper is organized as follows. Section II
provides a detailed description of our approach for 3-D hand
pose estimation and correction. Section III gives a brief review
of palmprint and hand geometry features extracted from the
pose corrected range and intensity images. The dynamic fusion
strategy for combing match scores from palmprint and hand
geometry matchers is detailed in Section IV. In Section V, we
introduce the 2-D-3-D hand database and present experimental
results. Finally, Section VI concludes this paper with summary
of our findings and the future work.

II. 3-D AND 2-D HAND POSE NORMALIZATION

Fig. 1 depicts the block diagram of the proposed 3-D and
2-D hand pose normalization approach. The key idea of our ap-
proach is to robustly fit a plane to a set of 3-D data points ex-
tracted from the region around the center of the palm. The ori-
entation of the plane (normal vector) in 3-D space is then com-
puted and used to estimate and correct the pose of the acquired
3-D and 2-D hand.

The first preprocessing step is to localize the hand in the ac-
quired hand images. Since the intensity and range images of the
hand are acquired near simultaneously, these images are reg-
istered and have pixel to pixel correspondence. Therefore, we
localize the hand by binarizing the intensity image using Otsu’s
threshold [4]. These binary images are further refined by mor-
phological open operators, which remove isolated noisy regions.
Finally, the largest connected component in the resulting binary
image is considered to be the set of pixels corresponding to
the hand. In order to locate the palm center, we initially ex-
perimented with an approach based upon interfinger (valley)
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Fig. 3. (a)Incorrect localization of interfinger finger points and subsequently the center of the palm due to considerable pose variation of the hand and the resulting
overlap between little and ring fingers. (b) Localization of circular palmar region using the distance transform approach.

points, commonly employed in the literature to extract the re-
gion of interest for palmprint identification. This approach tra-
verses the foreground boundary pixels (hand contour) to detect
local minima points corresponding to finger valleys between
little-ring and middle-index fingers. Center of the palm is then
located at a fixed distance along a line that is perpendicular to
the line joining the two finger valley points. Finally, a set of 3-D
data points inside a circular region around the center of the palm
is extracted for further processing. Radius of this circular region
of interest is empirically set to 60 pixels (in the range image).
Fig. 2 pictorially illustrates the previous approach on a sample
hand image in the database. This approach, however, fails to
accurately detect the two interfinger points when the degree of
rotation of the hand around the z axis is considerably high. This
is due to the overlapping of the fingers and subsequently leads to
erroneous localization of the center of the palm. Therefore, we
now employ a much simpler but robust method based upon dis-
tance transform to locate the center of the palm [14]. Distance
transform computes the Euclidean distance between each fore-
ground pixel (part of the hand) and its nearest pixel on the hand
contour. The point that has the maximum value for the distance
transform is considered to be the center of the palm. Fig. 3 illus-
trates the extraction of circular ROI for a sample hand image in
the database. It can be noticed that there is an overlap between
fingers due to high degree of rotation. Fig. 3(a) and (b) depicts
the located region of interest using the previously described ap-
proaches. Please note [refer to the third column in Fig. 3(a)] that
the first approach based upon landmark points locates a point
which is far off the actual center of the palm. We also observed
that the approach based upon distance transform may not always
locate the same palm center for different images from the same
hand with varying poses. However, it still locates a point in the
close vicinity of the actual center and such small error is per-
missible as we utilize a set of data points inside the extracted
region, rather than a single feature point, for further processing.

Once a set of 3-D data points (represented by [z;, v;, 2] T, i =
1...m, where m is the number of points) is extracted from the
region of interest, a 3-D plane is fit using the iterative reweighted
least squares (IRLS) approach. This approach solves a weighted
least squares formulation at every iteration until convergence.
The weighted least squares optimization at iteration p can be
formulated as follows:

af = argminiwz@*l) (27 - Xioé(p—l))2 (1)

@ i=1

(a)

Fig. 4. (a) Shaded view of sample 3-D hand point clouds before and (b) after
pose correction.

where o = [a1, o, 3] T are the three parameters of the plane
and X; = [1,z;,y;]. The w; is the weight given to each data
point, the value of which depends upon how far the point is
from the fitted plane (in the previous iteration). A bisquare
weighting function is employed to assign the weights when the
least squares residual (r;) is less than a certain threshold and is
defined as
2

w; = (1 - (r;)?) (2)

where r; = (z; — X;a). For points farther than the threshold, its
weight is set to zero. Once the plane approximating the region
around the center of the palm is computed, it is straightforward
task to compute its normal vector, which gives an estimation
of the orientation of the hand in 3-D space. Here we make an
assumption that the human hand is a rigid plane, which may not
always be true, especially in the case of inherent bend or skin
deformations. Nevertheless, the IRLS approach employed here
is robust and is less influenced by the outliers in the data, which
in our case arise from the bend or the deformations of the hand.

Let Hsp be a 3 x n matrix representing the point cloud data
of the acquired 3-D hand

1 T2 ...Tp
Hsp=|y1 ¥2 - ¥Un 3)
zZ1 z9 ... Zn

where x,y and z are the three coordinates of the data points.
Given this point cloud data and its orientation (in terms of the
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Fig. 5. (a) Sample intensity images with varying pose in our database. (b) Corresponding pose corrected and resampled images. (c) Pose corrected images after

hole filling.

normal vector to the plane and represented by n = [n,,, n,, n.]),
the pose corrected point cloud H. :;D is given by
Hyp = R Hap )

where R is the transformation matrix and can be expressed as
follows:

cos 0 0 sin 6,
R=| sinf,sinf, cosf, —sinf,cosb, %)
—cosf,sinf, sinf, cosf,cosb,
where 0, = —arctan(n,/n,) and 6, = arctan(n,/n.) are

the rotation angles about x and ¥ axis respectively. The rotation
matrix R is also used to correct the pose of the intensity image of
the hand. For this purpose, the original data can be represented
as

ry T2 ...Tnp
Hop=|y1 v2 ---Un (6)
L I ...1,
where x, y are the two coordinates and I, I, ..., I,, are the in-

tensity values corresponding to the hand in the acquired inten-
sity image. The pose corrected data is given by

Hyp = R Hop. 7

The pose corrected 3-D and 2-D data are a set of 3-D points
(point cloud) and need to be converted to range and intensity
images respectively for further processing. This is achieved by
resampling the pose corrected data on a uniform grid on the
x - y plane. In our experiments, the grid spacing (resolution)
is set to 0.45 mm, as the x and y axes resolution of the origi-
nally scanned data is found to be around this value. The process
of pose correction and resampling introduces several holes in
the pose corrected range and intensity images. This is due to
some regions, which are originally not visible or occluded to
the scanner, getting exposed after pose correction. Therefore,
besides resampling, the post processing for pose correction in-
volves hole filling using bicubic interpolation. Fig. 4 shows the
shaded view of sample 3-D hands and the corresponding pose

normalized point clouds. Fig. 5 shows sample intensity hand
images with varying pose in our database. The corresponding
pose corrected and resampled images and the pose corrected im-
ages after hole filling are also shown in Fig. 5. As can be seen
in Fig. 5(a), the hand in the third sample (refer to third row in
Fig. 5) has a high degree of rotation about the = axis. The pose
correction on this image leads to large number of holes in the
resampled image, and loss of significant information, especially
around the finger edges. It should be noted that the 3-D and 2-D
hands shown in Figs. 4(b) and 5(c) have not been corrected for
their pose variations about the z axis, since this process is a part
of our subsequent feature extraction method.

III. HAND FEATURE EXTRACTION

The pose corrected range and intensity images are processed
to locate regions of interest (ROI) for hand geometry and palm-
print feature extraction. The detailed description of this method,
which is based upon the detection of interfinger points, can be
found in [15]. It may be noted that the interfinger points can be
reliably located as there can be no overlap between fingers in
the pose corrected hand images. The following section provides
a brief description of feature extraction approaches employed in
this work.

A. 3-D Palmprint

3-D palmprints extracted from the range images of the hand
(region between finger valleys and the wrist) offer highly dis-
criminatory features for personal identification [19]. Features
contained in the 3-D palmprint are primarily local surface
details in the form of depth and curvature of palmlines and
wrinkles. In this work, we employ the SurfaceCode 3-D palm-
print representation, which is developed in our earlier work.
This compact representation is based upon the computation
of shape index [21] at every point on the palm surface. Based
upon the value of the shape index, every data point can be
classified in to one of the nine surface types. The index of the
surface category is then binary encoded using four bits to obtain
a SurfaceCode representation. The computation of similarity
between two feature matrices (SurfaceCodes) is based upon the
normalized Hamming distance.
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B. 2-D Palmprint

Personal authentication based upon 2-D palmprint has been
extensively researched and numerous approaches for feature ex-
traction and matching are available in the literature. Feature ex-
traction techniques based upon Gabor filtering has generally
outperformed others. In this work, we employ the competitive
coding scheme proposed in [10]. This approach uses a bank of
six Gabor filters oriented in different directions to extract dis-
criminatory information on the orientation of lines and creases
on the palmprint. Six Gabor filtered images are used to com-
pute the prominent orientation for every pixel in the palmprint
image and the index of this orientation is binary encoded to form
a feature representation (CompCode). The similarity between
two CompCodes is computed using the normalized Hamming
distance.

C. 3-D Hand Geometry

3-D features extracted from the cross-sectional finger seg-
ments have previously been shown to be highly discriminatory
[15] and useful for personal identification. For each of the four
fingers (excluding thumb), 20 cross-sectional finger segments
are extracted at uniformly spaced distances along the finger
length. Curvature and orientation (in terms of unit normal
vector) computed at every data point on these finger segments
constitute the feature vectors. The details of the 3-D finger
feature extraction and matching are discussed in [15].

D. 2-D Hand Geometry

2-D hand geometry features are extracted from the binarized
intensity images of the hand. The hand geometry features
utilized in this work include—finger lengths and widths, finger
perimeter, finger area and palm width. Measurements taken
from each of the four fingers are concatenated to form a feature
vector. The computation of matching score between two feature
vectors from a pair of hands being matched is based upon the
Euclidean distance.

IV. DYNAMIC FUSION

Weighted sum rule based fusion is widely employed in the
multibiometrics to combine individual match scores. The major
drawback of such a fusion framework is that poor quality sam-
ples can have adverse influence on the consolidated score since
fixed weights are given for all samples. In order to overcome this
problem, researchers have come up with fusion approaches that
can dynamically weight a match score based upon the quality of
the corresponding modality. However, accurately computing the
quality of a biometric feature can be very challenging. There-
fore, we develop a simple but efficient approach for combining
palmprint and hand geometry scores that are simultaneously ex-
tracted from the pose corrected range and intensity images. For
every probe hand, the orientation information estimated in the
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pose normalization step is utilized to selectively combine palm-
print and hand geometry features. The motivation for such an
approach arises from our observation that pose correction leads
to loss of information around the finger edges and, therefore, re-
sults in incomplete (partial) region of interest for finger geom-
etry feature extraction. The loss of crucial information in fin-
gers is prominent when the hand is rotated about = axis. The
process of matching finger/hand geometry features extracted
from the pose corrected images generates poor match scores for
such cases. We found from our observation that in such cases
it is judicious to ignore the hand geometry information and rely
only on the palmprint match scores to make a more effective de-
cision. The proposed dynamic combination approach attempts
to identify and ignore those poor hand geometry match scores
using the estimated orientation of the hand. The expression for
consolidated score can be given as (8), shown at the bottom of
the page, where sappaim, S3DPalm and sspug are the matching
scores from 2-D palmprint, 3-D palmprint and 3-D hand ge-
ometry matchers respectively. 6, is the estimated angle of ro-
tation of the hand about z axis; ¢+ and ¢~ are the two thresh-
olds for clockwise and counter-clockwise rotation, respectively.
The weights w1, w2, and w3 are empirically set to 0.4, 0.4, and
0.2 respectively. Fig. 6 shows the block diagram of the proposed
pose invariant hand identification approach with dynamic fusion
framework.

V. EXPERIMENTAL RESULTS

A. Dataset Description

Since there is no publicly available 3-D hand database where
hand images are acquired in a contact-free manner, we devel-
oped our own database using a commercially available 3-D dig-
itizer [17]. The image acquisition system employed in this work
is the same as the one described in [15]. Participants in the data
collection process conducted at our institute included mainly

G — ) W1S3DPalm + W2S2DPalm + W3S3DHG,
Final —

(s2DPalm + S3DPaim)/2,

if (0, <tT)&(0, >t7)
otherwise

®)
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Fig. 7. Textured 3-D hands showing five different hand poses (Pose I-V) for two users (row-wise) in our database.

students who volunteered to give their biometric data. The data-
base [22] currently contains 1140 right hand images (3-D and
the corresponding 2-D) acquired from 114 subjects. In order to
introduce considerable pose variations in the database, subjects
were instructed to present their hand in five different poses (refer
to Fig. 7). Specifically, for every user, five images are acquired
in the following scenario:

1) Pose I: frontal pose where the hand is held approximately

parallel to the image plane of the scanner;

2) Pose II: hand is rotated in the clockwise direction about x

axis;
3) Pose III: hand is rotated in the counter-clockwise direction
about z axis;

4) Pose IV: hand is rotated in the clockwise direction about y
axis;

5) Pose V: hand is rotated in the counter-clockwise direction
about y axis.

The amount of out-of-plane rotation (in Pose II-V) is nor-
mally not restricted and is left to the user’s discretion. Users are
given the freedom to pose at any angle as long as the hand is
inside the imaging volume of the scanner and there is no signif-
icant overlap of fingers in the acquired images that would make
it impossible to locate and separate fingers before pose correc-
tion. This is done in order to perform experiments and evaluate
the performance prior to pose normalization. Table I provides
the absolute mean and standard deviation of angles of rotation
for each of the five poses in the database. It should be noted
that the figures provided in this table are not accurate measure-
ments (since the ground truth is not available), but are the angles
of rotation estimated using the proposed approach. Neverthe-
less, the table gives an idea about the amount of pose variations
present in our database. It can be observed that, the mean of an-
gles about y axis (Pose IV and V) is much lower compared to
the case when the hand is rotated about the x axis (Pose II and
III). This is mainly due to the limitation posed by the scanner’s
imaging volume. During image acquisition, we observed that a
user’s hand cannot be scanned completely for larger angles of
rotation around ¥ axis and, therefore, we restricted the angle of
rotation to ensure that the hand is held well inside the imaging
volume. We also observed that the users are more comfortable
while rotating their hand about the z axis. This might be the
reason for higher angles of rotation about z axis (refer to Pose
IV and V in Table I), when user were only instructed to rotate
their hand about ¥ axis.

TABLE I
STATISTICS OF THE 3-D HAND DATABASE

Pose Angle of rotation about x axis | Angle of rotation about y axis
(in degree) (in degree)
Mean Std Mean Std
Pose I 6.48 4.51 5.01 3.67
Pose I 28.91 8.93 8.16 5.42
Pose III 25.99 8.88 5.42 4.798
Pose IV 13.71 8.05 15.17 10.93
Pose V 8.81 7.67 18.50 8.08

B. Verification Results

In order to ascertain the usefulness of the proposed pose cor-
rection and dynamic fusion approaches, we performed verifica-
tion experiments on the acquired database. In the first set of ex-
periments, we evaluate the performance improvement that can
be achieved by employing the pose correction approach for the
individual hand features. In the second set, we conduct exper-
iments to evaluate and compare the performance of the pro-
posed dynamic approach and weighted sum rule based fusion
for hand features that are extracted from the pose corrected in-
tensity and range images. All experiments reported in this paper
follow leave-one-out strategy. In other words, in order to gen-
erate genuine match scores, a sample is matched to all the re-
maining samples of the user (considering them as training data)
and the best match score is considered as the final score. This
process is repeated for all the five samples of the user. Fig. 8(a)
shows the match score distribution for 2-D palmprint features
extracted directly from the acquired intensity images. It can be
observed that there is a large overlap of genuine and impostor
match scores due to the considerable variations in pose present
in the database. Genuine and impostor score distribution for
2-D palmprint features extracted from pose corrected intensity
images is shown in Fig. 8(b). It is quite clear from this figure
that the process of pose normalization has greatly reduced the
overlap of genuine and impostor match scores. Further, in order
to ascertain this performance improvement, we computed FAR
and FRR from the matching scores for the previous two cases.
The corresponding ROC curves are shown in Fig. 8(c). The con-
sistent improvement in performance (with pose correction) seen
in this figure demonstrates the usefulness of the pose normaliza-
tion approach for 2-D palmprint features. We also performed ex-
periments to investigate whether similar performance improve-
ment can be achieved for 3-D palmprint features. Match score
distribution and ROC curves for 3-D palmprint matcher with
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Fig. 9. (a) Genuine—Impostor score distribution for 3-D palmprint matching before and (b) after pose correction. (c) ROC curves for the 3-D palmprint matching

before and after pose correction.
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Fig. 10. (a) 2-D score distribution for 2-D and 3-D palmprint matchers before and (b) after pose correction.

and without pose correction are shown in Fig. 9. 2-D matching
score distribution for 2-D and 3-D palmprint matchers shown
in Fig. 10 shows significant reduction in overlap of genuine and
impostor scores after pose correction. In the case of hand ge-
ometry features, 3-D features perform slightly better than 2-D
features. [refer to ROC curves in Fig. 11(a) and (b)]. Table II
provides a summary of this set of experiments with EER as the
performance index. Finally, we evaluate the performance from
the combination of palmprint and hand geometry features using
weighted sum rule and the proposed dynamic fusion approach.
As shown Fig. 11(c), the dynamic approach consistently outper-
forms the simple combination of match scores using the sum
rule. Table III illustrates the equal error rates from our exper-
iments for the combination of palmprint and hand geometry
matching scores simultaneously generated from contactless 2-D
and 3-D imaging.

C. Discussion

The experimental results presented in this paper are signifi-
cant in the context of contact-free hand identification as it has
been demonstrated that reliable identification can be performed
even in the presence of severe hand pose variations. Most of
the previous studies on unconstrained and contact-free hand
identification do not address pose variations of the user’s hand.
Instead these approaches implicitly make an assumption that
the user is cooperative enough to present the frontal view of
his/her hand. However, in practice such approaches may require
supervision in order to ensure that frontal views of the hand
are acquired, especially for users who are not trained to use
the system. More recently, researchers have developed hand
identification approaches that yield promising performance
even when the hand images are acquired under considerable
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Fig. 11. ROC curves for (a) the 3-D hand/finger geometry and (b) 2-D hand geometry matching before and after pose correction. (c) ROC curves for the combi-
nation of 2-D, 3-D palmprint and 3-D hand geometry matching scores using weighted sum rule and the proposed dynamic approach.

TABLE II
EQUAL ERROR RATES OF PALMPRINT AND HAND GEOMETRY MATCHERS BEFORE AND AFTER POSE CORRECTION

Matcher EER (%) EER (%)
(Without Pose Correction) (Pose Corrected)
2D Palmprint 11.80 1.10
3D Palmprint 16.32 1.61
3D Hand Geometry 40.9 17.2
2D Hand Geometry 28.69 22.15
TABLE III severe when the hand is rotated about the = axis as major part

EQUAL ERROR RATES FOR COMBINATION OF PALMPRINT AND HAND
GEOMETRY FEATURES

Matcher EER (%)
(2D+3D) Palmprint 0.72
(2D+3D) Palmprint + 3D 0.71
Hand Geometry
Dynamic Fusion 0.28

pose variations. However, these approaches are based upon
multiple land mark points located on the intensity images of
the hand and, therefore, their performance largely relies on the
accuracy of feature point detection. The approach presented in
this paper exploits the acquired 3-D hand data to estimate the
pose of the user’s hand. The major advantage of the 3-D data is
that the orientation of the hand can be robustly estimated using
a single point detected on the palm. In addition, discriminatory
3-D features extracted from the pose corrected range images
help to significantly improve the performance of the system
when used in combination with 2-D hand features.
Experimental results from our investigation on individual
hand features suggest that the palmprint features (2-D as well
as 3-D) are more suitable to be utilized, especially when the
degree of rotation of the hand is considerably high. This is
mainly because the palmprint features are less affected by oc-
clusion. In other words, the major part of the palmprint region
is visible to the scanner (even at higher angles of rotation)
and, therefore, the complete palmprint can be extracted from
the pose corrected range images. On the other hand, perfor-
mance of the hand geometry features has been disappointing.
Although there is significant improvement in performance with
the proposed pose normalization approach, the hand (finger)
geometry features suffer from loss of crucial information due to
occlusion around the finger edges. The occlusion is noticeably

of finger around its edges is not visible to the scanner, resulting
in significant loss of information during pose correction.
Therefore, only a partial region of interest for fingers can be
recovered from the pose corrected intensity and range images.
Moreover, the assumption that the palm and fingers lie on a
plane (coplanar) does not strictly hold good in most cases due
to finger movement and bending. This also might have played
a role in the poor performance of the hand geometry features.

The experimental results presented in this paper also show
that 3-D hand geometry features performed slightly better than
2-D features. This is because the computation of matching
distance for 3-D finger features involves a sliding approach
that performs multiple matches between the cross-sectional
finger features. This approach can effectively address the partial
matching of fingers to certain extent. On the other hand, 2-D
finger width features extracted from the pose corrected intensity
images suffer the most when only partial finger is available for
matching. Therefore, we do not utilize the 2-D hand geometry
features in the fusion framework for the combination of hand
features.

Fig. 11(c) shows the ROC curves for combination of palm-
print and hand geometry features. As can be observed from
this figure, a simple weighted combination of palmprint (2-D
as well as 3-D) and 3-D hand/finger geometry fails to achieve
the desired results. In fact, the combination achieves only mar-
ginal improvement in EER (refer to Table II) over the case when
only 2-D and 3-D palmprint matching scores are combined. On
the other hand, the proposed dynamic combination approach
achieves a relative performance improvement of 60% in terms of
EER over the case when features are combined using weighted
sum rule. As discussed earlier, the dynamic fusion approach can
lessen the influence of the poor hand geometry match scores on
the consolidated match score and thereby it helps to improve the
verification accuracy.
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VI. CONCLUSION

This paper has presented a promising approach to achieve
pose invariant biometric identification using hand images ac-
quired through a contact-free and unconstrained imaging set up.
The proposed approach utilizes the acquired 3-D hand to esti-
mate the orientation of the hand. The estimated 3-D orientation
information is then used to correct pose of the acquired 3-D as
well as 2-D hand. The Pose corrected intensity and range im-
ages of the hand are further processed for extraction of mul-
timodal (2-D and 3-D) palmprint and hand geometry features.
We also introduced a dynamic approach to efficiently combine
these simultaneously extracted hand features. This approach se-
lectively combines palmprint and hand geometry features, while
ignoring some of the poor hand geometry matching scores re-
sulting from high degree of rotation of the user’s hand, espe-
cially about the x axis. Our experimental results demonstrate
that an explicit pose normalization step prior to matching signif-
icantly improves identification accuracy. Experimental results
also demonstrate that the dynamic approach to combining palm-
print and hand geometry matching scores consistently outper-
forms their straightforward fusion using weighted sum rule.

The major disadvantage of the proposed approach that ham-
pers its utility for real world applications is the use of commer-
cial 3-D scanner. Slow acquisition speed, cost and size of this
scanner make it infeasible for any online biometric applications.
As part of our future work, we intend to investigate alternative
3-D imaging technologies that can overcome these drawbacks.
We are also exploring a dynamic feature level combination in
order to further improve the performance.
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