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Types of image processing (recap)

« Two main types of image processing operations:

— Spatial domain operations (in image space)

Today

— Transform domain operations (mainly in Fourier space)

« Two main types of spatial domain operations:
— Point operations (intensity transformations on individual pixels)

— Neighbourhood operations (spatial filtering on groups of pixels)
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Topics and learning goals

« Describe the principles of the Fourier transform for image processing

Forward & inverse transform, convolution theorem, properties, discrete Fourier transform

* Understand the effects of various Fourier domain filtering methods

Filtering procedure, notch filtering, low-pass filtering, high-pass filtering

« Combine filtering operations to allow multiresolution image processing

Difference of Gaussians, image pyramids, approximation, reconstruction




What is lost when lowering resolution?

-,

Downsampling Upsampling
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Jean Baptiste Joseph Fourier (1768-1830)

Fourier

Had a crazy idea (1807)
Any univariate function can be rewritten as a weighted sum of
sines and cosines of different frequencies

Don’t believe it?
* Neither did Lagrange, Laplace, Legendre, and other big wigs

« Fourier’s idea was not translated into English until 1878 Lagrange
o the manner in which the author arrives at these
But it’s (mostly) true! |
utit's ( ost y) true equations is not exempt of difficulties and...his analysis u P
e |tis now called the Fourier series to integrate them still leaves something to be desired VY
.. on the score of generality and even rigour.”
« There are some subtle restrictions - lsaghgle
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Weighted sum of sines

« Basic building block
fi(x) = a; sin(w;x + ¢;)
a; is the weight (amplitude)
w; Is the radial frequency

@; Is the phase

Add enough of them and you can get

any signalyouwant: f=f,+fi+fH+ 3+

waves

sum

VVVVVV



Weighted sum of sines
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https://en.wikipedia.org/wiki/Fourier series

Approximation of a square wave Approximation of a sawtooth wave
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https://en.wikipedia.org/wiki/Fourier_series

Spatial versus frequency domain

« Spatial domain
— The image plane itself
— Direct manipulation of pixels

— Changes in pixel position correspond to changes in the scene

 Frequency domain
— Fourier transform of an image
— Directly related to rate of changes in the image

— Changes in pixel position correspond to changes in the frequency

SSSSSS



Frequency domain overview

« High frequencies correspond to rapidly changing intensities across pixel

« Low frequency components correspond to large-scale image structures

* Frequency domain image processing via the Fourier transform

-

Fourier
transform

~
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Frequency
filtering
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Definition of the Fourier transform (1D)

* Forward Fourier transform

F(u) = foof(x)e‘izm‘xdx

Inverse Fourier transform

0.0)

fx) = f F(u)et?™xqdy

— 00

Uses complex valued sinusoids

Notation
f (x) is the spatial input function
F(u) is the Fourier transform
el®* = cos(wx) + i sin(wx)
w = 2mu is radial frequency

u is spatial frequency

i =+-1
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Properties of the Fourier transform

Property Spatial Frequency
Superposition f1(x) + fo(x) F,(uw) + F,(uw)
Translation f(x — Ax) F(u)e~t2mubx
Convolution f(x)* h(x) F(u)H(u)
Correlation f(x) & h(x) F(uwH"(u)
Multiplication f(x)h(x) F(u) *« H(u)
Scaling f(ax) F(u/a)/a
Differentiation £ (x) (i2mu)™F (u)
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Definition of the Fourier transform (2D)

 Forward Fourier transform Fourier transform pair

F(u,v) = f f f(x, y)e—iZn(ux + vy)dxdy feoF
T F=R+il

Real part + Imaginary part

* Inverse Fourier transform
Amplitude

f(x, )/') — f f F(u, v)eiZn(ux + UY)dudv a = \/RZ 4+ ]2

Phase

@ =tan"1(I/R)

Uses complex valued sinusoids
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Discrete Fourier transform (DFT)

Digital images are discrete 2D functions _ _
The discrete Fourier

 Forward discrete Fourier transform transform and its
M-1N-1 inverse always exist
i (ux vy)
Flu,v) = ) Z f(x,y)e
x=0 y=

foru=0.M—-1landv=0..N—-1 Discrete Fourier transform basis

HHHHD

* Inverse discrete Fourier transform

M—1N-1
f(x,y) = E E F(u, v)e'2™ (7 * W)
X, V) = u,ve
Y) =N
u=0 v= forx=0.M—-1andy=0..N—-1
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Frequency domain filtering

« Each F(u,v)dependsonall f(x,y), x=0..M—-1, y=0..N—1

* Frequencies in the Fourier domain correspond to patterns in the image
* The value of F(0,0) is the average intensity over all pixels of the image
« Low frequencies correspond to slowly varying intensities across pixels
« High frequencies correspond to rapid intensity changes across pixels

* Noise typically corresponds to fluctuations in the highest frequencies

SSSSSS



Frequency domain filtering

* Fourier images are typically centred for visualisation and processing
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Y | | | [ ' [
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periods meet here. : : : : [ :
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\ I jFour back-to-back, |
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| Ipenod:. meet here.I ! M—=1— Fu, v)
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|<— One period (M samples) —-| D = M X N data array, F(u, v).
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Frequency domain filtering

« Centering the Fourier images means multiplying the spatial images by (—1)**Y

i2m(“0% + 20Y)
Translation property: F(u —ug, v —vy) < f(x,y)e”"\M " N

Centering by translation over: uy = M/2 and vy = N/2
Substitution yields: F(u—M/2,v —N/2) o f(x,y)e&+Y)

Which boils down to:  f (x, y)(cos(m(x + y)) + isin(m(x +y))) = f(x, y)(=D* Y

T = —1or1l T =0 x + y has integer value




Procedure for frequency domain filtering

1. Multiply the input image f(x,y) by (—1)* ¥ to ensure centering F (u, v)
2. Compute the transform F(u, v) from image f(x,y) using the 2D DFT

3. Multiply F(u,v) by a centred filter H(u, v) to obtain the result G (u, v)

4. Compute the inverse DFT of G (u, v) to obtain the spatial result g(x, y)
5. Take the real component of g(x, y) (the imaginary component is zero)

6. Multiply the result by (—1)* *¥ to remove the pattern introduced in 1.

SSSSSS



Example: low-pass filtering

1. Multiply the input image f(x,y) by (—1)* *¥ to ensure centering F(u, v)

&0 50
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300 300

all 100 140 20 . 250 300 3a0 400 440 a0 100 180 200 250 300 3a0 400 440
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Example: low-pass filtering

2. Compute the transform F(u, v) from image f(x,y) using the 2D DFT
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200
250

300
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50 100 150 200 250 300 350 400 450
l“:l
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Example: low-pass filtering

3. Multiply F(u,v) by a centred filter H(u, v) to obtain the result G (u, v)
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Example: low-pass filtering

3. Multiply F(u,v) by a centred filter H(u, v) to obtain the result G (u, v)

&0 50

100 100
1a0 150
200 200
250

250

300 300

all 100 140 200 250 300 3a0 400 440 a0 100 180 200 250 300 3a0 400 440
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Example: low-pass filtering

4. Compute inverse DFT 5. Take real component
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Example: low-pass filtering

« The resulting low-pass filtered image is a smoothed version of the original
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Example: notch filtering

Satellite image showing Result image using the

scanline artifacts notch reject filter

Fourier transform of Noise pattern captured

the satellite image by the notch pass filter

Notch pass filter
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Exploiting the convolution theorem

* Filtering in the frequency domain can be computationally more efficient

* Designing filters can be more intuitive in the frequency domain

« Low-pass filter: keep low frequencies but attenuate high frequencies

« High-pass filter: keep high frequencies but attenuate low frequencies

« Band-pass filter: keep frequencies in a given band and attenuate the rest

« Take the inverse transform to get the corresponding spatial filter

SSSSSS



Gaussian filter (low-pass)
 The Fourier transform of a Gaussian is a Gaussian

X2

1 _x 2 ,.2.,2

1D: h(x) = We 202 PERN H(u) — e~ 2m0U

1 —x2+y2 2 :2(4,2 2
2D: h(x,y) = —e 202 AN H(u,v) =e2m0 (u? +v?)

1 n/2 _x%+...+x,21 2 2(. 2 2
nD:  h(xq,..,x,) = (Znaz) e 202 © H(uq, ... uy) = e—2m?o?(uf + ..+ uj)




Difference of Gaussian filter (high-pass)

« Approximation of an inverted Laplacean filter

DoG(x) = ajh(x;01) — azh(x;0,) & DoG(u,v) = a;H(u;01) — a,H(u; 02)

Gaussian H (u) DoG H(u)

h(x) h(x)

Tl —1[-1]-1

Lx[r]1]n —181-1

1111 —1|—1|—1
1271 010
Llal4a]2 —1] 4 |-1
16 11211 0[=10

> X




What is lost when lowering resolution?
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Multiresolution image processing

Small objects and fine details benefit from high resolution

Large objects and coarse structures can make do with lower resolution

If both are present at the same time, multiple resolutions may be useful

This requires computing image pyramids 11 A Level 0 (apex)
2X2/<j>\\Levell
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/ \\ °
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Creating image pyramids

Downsampler 1

Compute an
(rows and columns)

approximation of the

Approximation Levelj —1 : : e
filter 2l T ™ approximation input image by filtering
and downsamplin
2 Upsampler PIng
rows and columns
— |1 - ( ) 2. Upsample the output
nterpolation

of step 1 and filter the
result (interpolation)

filter
Prediction l
Level j Level
input imége ® - ®—> prediction 3. Compute the
residual difference between the

prediction of step 2
Repeating this produces an approximation and prediction residual pyramid and the input to step 1




Example

Approximation pyramid

Residual pyramid
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To reconstruct the image:

1.

Upsample and filter
the lowest resolution
approximation image

Add the one-level
higher prediction
residual



Further reading on discussed topics

« Chapter 4 of Gonzalez and Woods 2002
» Sections 3.4-3.5 of Szeliski 2010

Acknowledgement

 Some images drawn from the above resources
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