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Introduction
• Adding the time dimension to the image formation
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Introduction
• A changing scene may be observed and analysed

via a sequence of images
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Introduction
• Changes in an image sequence provide features for 

– Detecting objects that are moving
– Computing trajectories of moving objects
– Performing motion analysis of moving objects
– Recognising objects based on their behaviours
– Computing the motion of the viewer in the world
– Detecting and recognising activities in a scene
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Applications
• Motion-based recognition

– Human identification based on gait, automatic object detection

• Automated surveillance
– Monitoring a scene to detect suspicious activities or unlikely events

• Video indexing
– Automatic annotation and retrieval of videos in multimedia databases

• Human-computer interaction
– Gesture recognition, eye gaze tracking for data input to computers

• Traffic monitoring
– Real-time gathering of traffic statistics to direct traffic flow

• Vehicle navigation
– Video-based path planning and obstacle avoidance capabilities
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Scenarios
• Still camera

Constant background with
– Single moving object
– Multiple moving objects

• Moving camera
Relatively constant scene with
– Coherent scene motion
– Single moving object
– Multiple moving objects
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Topics
• Change detection

Using image subtraction to detect changes in scenes

• Sparse motion estimation
Using template matching to estimate local displacements

• Dense motion estimation
Using optical flow to compute a dense motion vector field
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Change Detection
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• Detecting an object moving across a constant 
background

• The forward and rear edges of the object advance 
only a few pixels per frame

• By subtracting the image It from the previous image 
It-1 the edges should be evident as the only pixels 
significantly different from zero 

Change Detection
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Image Subtraction
Step: Derive a background image from a set of video 
frames at the beginning of the video sequence
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Image Subtraction
Step: Subtract the background image from each 
subsequent frame to create a difference image
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Image Subtraction
Step: Threshold and enhance the difference image to 
fuse neighbouring regions and remove noise
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Image Subtraction
Detected bounding boxes overlaid on input frame

Copyright (C) UNSW 13COMP9517 23T2W8 Motion Estimation



Change Detection
• Image subtraction algorithm

– Input: images It and It-Δt (or a model image)
– Input: an intensity threshold τ
– Output: a binary image Iout

– Output: a set of bounding boxes B

1. For all pixels [r, c] in the input images,
 set Iout[r, c] = 1 if (|It[r, c] –It-Δt[r, c]|>τ)
 set Iout[r, c] = 0 otherwise
2. Perform connected components extraction on Iout

3. Remove small regions in Iout assuming they are noise
4. Perform a closing of Iout using a small disk to fuse neighbouring regions
5. Compute the bounding boxes of all remaining regions of changed pixels
6. Return Iout[r, c] and the bounding boxes B of regions of changed pixels
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Sparse Motion Estimation
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Motion Vector
• A motion field is a 2D array of 2D vectors 

representing the motion of 3D scene points 
• A motion vector in the image represents the 

displacement of the image of a moving 3D point
– Tail at time t and head at time t+Δt
– Instantaneous velocity estimate at time t

Copyright (C) UNSW 16COMP9517 23T2W8 Motion Estimation

Zoom out Zoom in Pan Left



Sparse Motion Estimation
• A sparse motion field can be computed by identifying 

pairs of points that correspond in two images taken 
at times t and t+Δt

• Assumption: intensities of
interesting points and their
neighbours remain nearly
constant over time

• Two steps:
– Detect interesting points at t
– Search corresponding points at t+Δt
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Sparse Motion Estimation
• Detect interesting points

– Image filters
• Canny edge detector
• Hessian ridge detector
• Harris corner detector
• SIFT features
• …

– Interest operator
• Computes intensity variance in the vertical, 
 horizontal and diagonal directions 
• Interest point if the minimum of these four variances 

exceeds a threshold
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Detect Interesting Points
Procedure detect_interesting_points(I,V,w,t) {
 for (r = 0 to MaxRow – 1)
  for (c = 0 to MaxCol – 1)
   if (I[r,c] is a border pixel) break;
   else if (interest_operator(I,r,c,w) >= t)
    add (r,c) to set V;
}

Procedure interest_operator (I,r,c,w) {
 v1 = variance of intensity of horizontal pixels I[r,c-w]…I[r,c+w];
 v2 = variance of intensity of vertical pixels I[r-w,c]…I[r+w,c];
 v3 = variance of intensity of diagonal pixels I[r-w,c-w]…I[r+w,c+w];
 v4 = variance of intensity of diagonal pixels I[r-w,c+w]…I[r+w,c-w];
 return min(v1, v2, v3, v4);
}

Copyright (C) UNSW 19COMP9517 23T2W8 Motion Estimation



Sparse Motion Estimation
• Search corresponding points

– Given an interesting point Pi from It, take its 
neighbourhood in It and find the best matching 
neighbourhood in It+Δt under the assumption that 
the amount of movement is limited
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Similarity Measures
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Similarity Measures
• Mutual information (to be maximised)
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Dense Motion Estimation
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Dense Motion Estimation
• Assumptions:

– The object reflectivity and illumination do not change 
during the considered time interval

– The distance of the object to the camera and the light 
sources does not vary significantly over this interval

– Each small neighbourhood Nt(x,y) at time t is observed in 
some shifted position Nt+Δt(x+Δx,y+Δy) at time t+Δt

• These assumptions may not hold tight in reality, but 
provide useful computation and approximation

Copyright (C) UNSW 24COMP9517 23T2W8 Motion Estimation



Spatiotemporal Gradient
• Taylor series expansion of a function

• Multivariable Taylor series approximation
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Optical Flow Equation
Assuming neighbourhood Nt(x, y) at time t moves over vector 
V=(Δx, Δy) to an identical neighbourhood Nt+Δt(x+Δx, y+Δy) at 
time t+Δt leads to the optical flow equation:

),,(),,( tyxfttyyxxf =∆+∆+∆+

t t+Δt
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where                          is the velocity or optical flow of
and                                                                      is the gradient

Optical Flow Computation
Combining (1) and (2) yields the following constraint:
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Optical Flow Computation
• The optical flow equation provides a constraint that 

can be applied at every pixel position

• However, the equation does not have unique solution 
and thus further constraints are required

For example, by using the optical flow equation for a group of 
adjacent pixels and assuming that all of them have the same 
velocity, the optical flow computation task amounts to solving 
a linear system of equations using the least-squares method

Many other solutions have been proposed (see references)

Copyright (C) UNSW 28COMP9517 23T2W8 Motion Estimation



Optical Flow Computation
• Example: Lucas-Kanade approach to optical flow

Copyright (C) UNSW 29COMP9517 23T2W8 Motion Estimation

( , )x yv v v= x
ff
x
∂

=
∂ y

ff
y
∂

=
∂ t

ff
t

∂
=
∂

Assume the optical flow equation holds for all pixels 𝑝𝑝𝑖𝑖 in
a certain neighbourhood and use the following notation:
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Then we have the following set of equations:



Optical Flow Computation
• Example: Lucas-Kanade approach to optical flow

The set of equations can be rewritten as                where

This can be solved using the least-squares approach:
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Optical Flow Example
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https://www.youtube.com/watch?v=GIUDAZLfYhY

https://www.youtube.com/watch?v=GIUDAZLfYhY
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